

Residential

Technical Reference Manual

Version 2015.1

Effective Date: July 1, 2014

Efficiency Maine Trust 168 Capitol Street Augusta, ME 04333 866-376-2463 efficiencymaine.com

Table of Contents

TABLE OF CONTENTS	2
INTRODUCTION	4
TRM UPDATES FROM PY2014	8
RETAIL PRODUCTS	10
CFL BULB	
LED BULB	
Refrigerator	
FREEZER	
ROOM AIR CONDITIONER	
Room Air Purifier	
Dehumidifier	
Dishwasher	
Clothes Washer	
HIGH EFFICIENCY ELECTRIC WATER HEATER	
HEAT PUMP WATER HEATER	
HOME ENERGY SAVINGS PROGRAM	25
Сизтом Ратн	26
AIR SEALING	27
Attic/Roof Insulation	
WALL INSULATION	
BASEMENT INSULATION	
DUCTLESS HEAT PUMP	
High-Efficiency Furnaces and Boilers	
Pellet/Wood Stove	
Pellet Boiler	
Central Air Source Heat Pump (ducted)	
Central Geothermal (Ground source) Heat Pump	41
On-Demand Natural Gas Water Heater	43
LOW INCOME PROGRAM	44
DIRECT INSTALL CFL BULB	
LOW INCOME MULTIFAMILY GAS HEAT	
FURNACE AND BOILER RETROFIT	
DUCTLESS HEAT PUMP RETROFIT	
Low Flow Kitchen Aerator	-
Low Flow Kitchen Aerator	
Low Flow Bathroom Aerator	
Low Flow Showerhead	
Domestic Water Heater Temperature Turn-Down	
Domestic Water Heater Pipe Insulation	
Domestic Water Heater Wrap	
APPENDIX A: GLOSSARY	57
APPENDIX B: COINCIDENCE AND ENERGY PERIOD FACTORS	60

APPENDIX C: RETAIL LIGHTING ASSUMPTIONS AND EISA62	
APPENDIX D: STANDARD ASSUMPTIONS FOR MAINE64	
APPENDIX E: SUPPLEMENTARY INFORMATION FOR DUCTLESS HEAT PUMPS65	

Introduction

PURPOSE

The Efficiency Maine Trust Residential and Commercial Technical Reference Manuals (TRMs) provide documentation for the Trust's calculation of energy and demand savings from energy efficiency measures. Each TRM serves as a central repository and common point of reference for the methods, formulas, assumptions and sources that are used to estimate savings from energy efficiency measures, and provides a common platform for analyzing energy savings across measures and programs. The importance of the TRM is derived from the importance of energy and demand savings calculations, which are at the foundation of the Trust's program planning and management, cost-effectiveness analysis, program evaluation, Annual Report and ISO-NE Forward Capacity Market participation.

GENERAL FORMAT

The Residential TRM is organized by program area and then by measure category, where a measure category may include one or more measures. Each measure category is presented in its own section as a measure characterization, which follows a standard format. The measure characterization includes: a measure overview, energy and demand savings algorithms, baseline assumptions, deemed parameter values or instructions for inputs to savings algorithms, measure life and measure costs and impact factors for calculating adjusted gross savings and net savings. When there is a set of common values across measures, summary tables are provided at the end of the relevant section or in an appendix.

Where deemed savings values are specified, the Trust uses integer values when reporting in units of kWh, one decimal place when reporting in units of MMBtu, and three decimal places for all demand (kW) values.

GUIDANCE & COMMON ASSUMPTIONS

In using the Trust's TRMs, it is helpful to note the following:

- **Gross savings:** Algorithms are specified for *gross* savings. To calculate *adjusted gross* savings or *net* savings, impact factors that account for verified measure performance (adjusted gross) and attribution (net) must be applied. The formulas used to calculate adjusted gross and net savings are described below.
- **Annual savings:** Algorithms are specified for *annual* savings. Unless otherwise noted, annual savings are assumed to be realized for each year of the measure life.
- **Unit savings:** Algorithms are specified for *per unit savings*. The Trust's program databases track and record the number of units of a given measure delivered through the program.
- *Meter-level savings:* Savings are assumed to be the savings that occur at the customer's meter (or point of use for non-electric savings); line losses are not included in these calculations.
- Non-Electric Savings: When applicable, savings are counted for natural gas, oil, propane, kerosene, wood and/or water. The deemed unit savings, algorithms and assumptions for these non-electric impacts are described in the measure characterizations only for those measures for which those savings are counted. If a non-electric impact is not described for a measure, it can be assumed that no non-electric impacts are counted for that measure.

- *In-Service Rate (ISR):* The in-service rate represents the percentage of program units which are installed or implemented.
- **Coincidence factors (CF):** Coincidence factors are provided for the summer and winter on-peak periods as defined by the ISO-New England for the Forward Capacity Market (FCM), and are calculated in accordance with the FCM methodology. Electric demand reduction during the ISO New England peak periods is defined as follows:
 - Summer On-Peak: average demand reduction from 1:00 to 5:00 PM on non-holiday weekdays in June, July and August
 - Winter On-Peak: average demand reduction from 5:00 to 7:00 PM on non-holiday weekdays in December and January
- **Deemed savings value vs. deemed savings algorithm:** Most residential measures have deemed savings values representing the estimated average savings per unit for the measure. The deemed savings value may be based directly on the results from an evaluation or other research study, or may be based on a set of deemed input parameters applied to the stated energy and demand savings algorithms.

The TRM may include some measures with deemed savings algorithms, for which deemed values are provided for only some of the parameters in the algorithm and actual values for a given measure are required to calculate savings. In these cases, measure-specific data recorded in the relevant program tracking database will be used in combination with the TRM deemed parameters to compute savings.

- **Project-specific ("Actual") data for Parameter Inputs**: The savings methods for some measures specify "Actual" data for at least one of the input parameters. Actual data refers to values that are specific to the project. Unless otherwise stated, these actual project data should be collected and documented on the project application forms. For some measures, the TRM provides alternative values if the actual data is unknown.
- **Data sources for Deemed Parameter Inputs:** Wherever possible, deemed parameter values and assumptions are based on Maine-specific research and data. When such data are not available, the TRM relies on relevant data sources from other areas within the U.S.; in doing so, data sources from neighboring states and regions are prioritized. In some cases, engineering judgment is used.

• **Decision type:** The decision type describes the underlying scenario that is assumed for the savings calculation of a given measure. The decision type has implications for the baseline efficiency case and the measure cost assumptions as shown below.¹

Decision Type	Scenario	Baseline	Measure Cost
New Construction	Customer is in the market to	Federal standards or	Incremental cost: difference
	purchase new equipment for a new	standard market	between the cost of baseline
	construction or new capacity	practice for new	and cost of high-efficiency
	project	equipment	equipment
Replace on Burnout	Customer is in the market to	Federal standards or	Incremental cost: difference
	purchase new equipment to	standard market	between the cost of baseline
	replace existing equipment that has	practice for new	and cost of high-efficiency
	worn out or otherwise needs	equipment	equipment
	replacing		
Retrofit	Customer's existing equipment is in	Existing equipment or	Full measure cost: cost of the
	working order and has remaining	conditions	high-efficiency equipment
	useful life		(including installation)

- *Efficiency standards:* The TRM anticipates the effects of changes in efficiency standards for some measures, including shifts in the baseline for CFL and LED bulbs due to changes in Federal Standards for lighting products under the Energy Independence & Security Act of 2007 (EISA).
- **TRM updates:** The TRMs are reviewed and updated annually, or more frequently if needed, to reflect new information obtained through research and evaluation studies, changes in program offerings (measures) and shifts in technology and baselines. Annual updates to the TRM are published as a new "version" with a specific effective date. Inter-year updates to the TRM are published as Addendums containing impacted change pages with changes and effective date indicated.

SAVINGS FORMULAS

The formulas and inputs used to calculate the deemed gross annual energy ($\Delta kWh/yr$) and gross demand (ΔkW) savings for each measure are described in the measure sections. The formulas used to calculate adjusted gross savings, on-peak demand savings, and lifetime savings are described below:

Adjusted Gross Savings

Adjusted gross savings represent the total energy and demand savings achieved by measures implemented through the Trust's programs. The adjusted gross savings values are calculated by applying various evaluation parameters to the gross annual energy and demand savings:

Adjusted Gross Annual kWh = $\Delta kWh/yr \times ISR \times RR_E$

Adjusted Gross Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times Measure Life$

¹ Table adapted from National Action Plan for Energy Efficiency (2008). Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics, Inc. and Regulatory Assistance Project. <<u>http://www.epa.gov/eeactionplan</u>>

Adjusted Gross Annual MMBtu² = Δ MMBtu/yr × ISR × RR_E

Adjusted Gross Lifetime MMBtu² = Δ MMBtu/yr × ISR × RR_E × Measure Life

Adjusted Gross Summer On-Peak kW = Δ kW × ISR × RR_D × CF_S

Adjusted Gross Winter On-Peak kW = $\Delta kW \times ISR \times RR_{D} \times CF_{W}$

The Adjusted Gross Summer On-Peak kW value is equivalent to the Demand Reduction Value reported to the ISO-NE Forward Capacity Market.

Net Savings

Net Savings represent the total realized energy and demand savings that are attributable to the Trust's programs. These net savings are calculated by applying the net-to-gross (NTG) factors such as free-ridership and spillover to the adjusted gross savings.

Net Annual kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO)$ Net Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO) \times$ Measure Life Net Summer On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_S \times (1 - FR + SO)$ Net Winter On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_W \times (1 - FR + SO)$

*The parameter (1 - FR + SO) may be replaced with the net-to-gross (NTG) ratio.

SAVINGS CALCULATIONS

The actual calculation of energy efficiency savings, pursuant to the algorithms and assumptions documented in the TRM, occurs in the Trust's program tracking databases. In 2012, the Trust initiated a significant effort to upgrade and transform its existing program-specific databases into a comprehensive, unified database system that supports multiple programs with standardized internal processes, features and quality. This initiative builds on the foundation of the successful Efficiency Maine Reporting and Tracking (effRT) database system that historically supported the Business Programs to create a new multi-program database system, effRT 2.0. As part of this effort, the Trust is mapping the TRM deemed values and algorithms into effRT, and establishing processes for updates to effRT to coincide with TRM updates.

As of January 1, 2014, the Trust added adjustment factors for the in-service rate (ISR) and the evaluated realization rate (RR) to the formulas used to calculate the demand reduction value (DRV) for Forward Capacity Market (FCM) monthly reporting. Results using these two additional factors are referred to as *Adjusted Gross Savings* in the effRT report.

² In this document and other reporting documents, fossil fuel savings are reporting in unit of MMBtu. In the tracking data base (effRT), natural gas savings are calculated in units of therms and then must be converted to MMBtu.

TRM Updates from PY2014

Change Type	TRM Section	Description	Effective Date
PY2014 Addend	lum	1	
Revision	Table B-1: Coincidence Factors and Energy Period Factors	Added coincidence and energy period factors for the new ductless heat pump and ductless heat pump retrofit measures to existing Table	11/12/2013
New	Ductless Heat Pump	New measure section for Ductless Heat Pump	11/12/2013
Revision	CFL Bulb, LED Bulb	-Updated savings algorithm and savings values to account for evaluation findings indicating a share of retail lighting program measures being used in commercial settings	7/1/2013
PY2015 Updates	S		
Revision	CFL Bulb, LED Bulb	-Updated savings to include new EISA update for PY2015	7/1/2014
Revision	Refrigerator, Freezer, Dehumidifier	 -Updated energy and demand savings based on new evaluation results and a baseline adjustment. -Updated Coincidence Factors to be consistent with updated peak demand savings -Updated free-ridership (FR) and spillover (SO) using new evaluation results 	7/1/2014
Revision	Room Air Conditioner	 -Updated energy and demand savings using a new baseline condition accounting for new code standard -Updated free-ridership (FR) and spillover (SO) using new evaluation results 	7/1/2014
Revision	Room Air Purifier	-Updated free-ridership (FR) and spillover (SO) using new evaluation results	7/1/2014
Revision	Clothes Washer, Dishwasher	-Updated distribution of water heater fuels based on new evaluation results -Updated free-ridership (FR) and spillover (SO) using new evaluation results (the values for the dishwasher measure were based on overall program weighted average)	7/1/2014
Revision	effRT schedules (Appliance Rebate and Retail Lighting Programs)	Savings, Pricing and Factor schedules in effRT updated to reflect 2014 TRM values and formulas.	7/1/2014
Revision	High Efficiency Electric Water Heater	Temperature setpoint of the water heater was updated based on recent evaluation results	7/1/2014
Revision	Heat Pump Water Heater	-Updated savings based on a Heat Pump Water Heaters Field Evaluation report -Updated free-ridership (FR) and spillover (SO) using new evaluation results	7/1/2014
Revision	Table B-1: Coincidence Factors	-Updated Coincidence Factors for the following measures: CFL Bulb, LED Bulb, Refrigerator, Freezer, Dehumidifier, Clothes Washer, Heat Pump Water Heater -Added Coincidence Factors for all newly added measures	7/1/2014

Revision	Table B-1: Energy Period	-Updated Energy Period Factors for the following	7/1/2014			
	Factors	measures: CFL Bulb, LED Bulb, Refrigerator,				
		Freezer, Dehumidifier, Clothes Washer, Heat				
		Pump Water Heater				
		-Added Energy Period Factors for all newly added				
		measures				
Revision	Ductless Heat Pump	Energy/demand impacts, description of	7/1/2014			
		methodology, coincidence factors, and energy				
		period factors for the Ductless Heat Pump				
		measure (added to the TRM as a PY2014				
		addendum) were updated based on a revised				
		savings model.	7/1/2014			
New	Direct Install CFL Bulb New measure section for Direct Install CFL in Low					
		Income Program				
New	Ductless Heat Pump	New measure section for Ductless Heat Pump	7/1/2014			
	Retrofit	Retrofit in Low Income Program				
New	Low Income Multifamily	New measure sections for heating measures: Low	7/1/2014			
	Gas Heat , Furnaces and	Income Multifamily Gas Heat, Furnaces and				
	Boilers, Furnace and	Boilers, Furnace and Boiler Retrofit				
	Boiler Retrofit					
New	Home Energy Savings	New measure sections for the following measures:	7/1/2014			
	Program	Custom Path, Air Sealing, Attic/Roof Insulation,				
		Wall Insulation, Basement Insulation, High-				
		Efficiency Furnaces/Boilers, Furnace and Boiler				
		Retrofit, Pellet/Wood Stove, Pellet Boiler, Central				
		Air Source Heat Pump (Ducted), Central				
		Geothermal (Ground Source) Heat Pump, On-				
		Demand Natural Gas Water Heater				
Removal	Advanced Power Strip	This measure was discontinued, and the TRM	7/1/2014			
		entry was removed accordingly				

New: indicates a measure that was not included in the previous TRM

Revision: indicates a revision to the savings or costs of an existing measure Removal: indicates a removal of measure that is discontinued

Retail Products

CFL Bulb										
Last Revised Date	7/1/2014									
MEASURE OVERVIEW										
Description	ENERGY ST									
Primary Energy Impact	Electric									
Sector	Residential	, Commercial								
Program(s)	Retail Light	ing Program								
End-Use	Lighting									
Decision Type	New Const	ruction, Replac	e on Burnout							
DEEMED GROSS ENERGY SAV	INGS (UNIT	SAVINGS)								
Demand savings	Δ kW	= 0.032								
Annual energy savings	∆kWh/yr	= 27								
GROSS ENERGY SAVINGS ALC	GORITHMS (I	JNIT SAVINGS)								
Demand savings	Δ kW	= Δ Watt _{CFL} / 1	,000 x EISA%	CFL						
Annual energy savings	∆kWh/yr	= Δ Watt _{CFL} / 1,	,000 x EISA% _c	_{CFL} x [365 x HF	PD _{RES} x %R	RES + HPY _{co}	_{мм} х %СОІ	MM]		
Definitions	ΔWatt _{CFL} EISA% _{CFL} 1,000 365 HPD _{RES} %RES HPY _{COMM} %COMM	EISA% CFL= Savings adjustment factor to account for EISA baseline impacts1,000= Conversion: 1,000 Watts per kW365= Conversion: 365 days per yearHPDRES= Average daily operating hours in residential setting (hrs/day)%RES= Share of bulb purchases that are installed in residential sockets (%)HPYCOMM= Average annual operating hours in commercial setting (hrs/yr)								
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	Incandesce	nt/Halogen bul	b							
Efficient Measure	ENERGY ST	AR [®] certified C	FL							
PARAMETER VALUES (DEEMI	ED)									
Measure	$\Delta \text{Watt}_{\text{CFL}}$	HPD _{RES}	НРҮ _{сомм}	EISA% _{CFL}	%RES	%COMM		yrs)	Cost (\$)	
CFL Bulb	49 ⁴	2.04 ⁵	3,772 ⁶	64.8% ⁷	96% ⁸	4% ⁸	12.5	59	1.40 ¹⁰	
IMPACT FACTORS										
Measure		ISR	RR _E	RR_{D}	CF	s	CF_W	FR	SO	
CFL Bulb		irst year) & lifetime) ¹¹	100% ¹²	100% ¹²	9.6%	6 ¹³ 2	0.2% ¹⁴	34% ¹⁵	0% ¹⁵	

³ ENERGY STAR[®] CFL Key Performance Requirements: <u>http://www.energystar.gov/index.cfm?c=cfls.pr_crit_cfls</u>

⁴ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 19.

⁵ Ibid, page 20.

⁶ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

⁷ See Appendix C, Table C-4.; value for EMT Program Year 2015.

⁸ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 71.

⁹ Ibid, page 23.

¹⁰ Ibid, page 33.

¹¹ The first year in-service rate is 73% (The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 18) and the lifetime in-service rate is 99% (Department of Energy Uniform Methods Protocol for Residential Lighting) based on the UMP-recommended assumption that 99% of program bulbs are installed within 3 years. EMT uses the lifetime in-service rate value to calculate lifetime energy impacts and ISO-NE FCM demand reduction. ¹² Realization rates are 100% since savings estimates are based on evaluation results.

¹³ Composite summer coincidence factor: 96% of bulbs in residential sockets with summer CF at 6.8% (The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012. Prepared for Efficiency Maine Trust) and 4% of bulbs in commercial sockets with summer CF at 76% (Efficiency Maine Trust Commercial TRM, July 1, 2013).

¹⁴ Composite winter coincidence factor: 96% of bulbs in residential sockets with winter CF at 18.4% (The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012. Prepared for Efficiency Maine Trust) and 4% of bulbs in commercial sockets with winter CF at 63% (Efficiency Maine Trust Commercial TRM, July 1, 2013).

¹⁵ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 27.

LED Bulb										
Last Revised Date	7/1/2014									
MEASURE OVERVIEW										
Description		TAR [®] LED Bulb								
		f an existing or				ENERGY S	STAR [®] certifi	ied LED light	s consume 7	'5% less
		an convention	al incandes	cent li	ghts. ¹⁶					
Primary Energy Impact	Electric									
Sector		al, Commercial								
Program(s)	_	iting Program								
End-Use	0 0									
Decision Type		truction, Repla	ace on Burr	nout						
DEEMED GROSS ENERGY SA	-									
Demand savings	∆kW	= 0.034								
Annual energy savings	∆kWh/yr	= 29								
GROSS ENERGY SAVINGS A	LGORITHMS	(UNIT SAVIN	GS)							
Demand savings	ΔkW	= (Watts _{BASE} \cdot	– Watts _{LED})	/ 1,00	0 x EISA	% _{LED}				
Annual energy savings	Δ kWh/yr	= (Watts _{BASE} -	– Watts _{LED})	/ 1,00	0 x EISA	% _{led} x [36	5 x HPD _{res} x	%RES + HPY	с _{омм} х %СО	MM]
Definitions	Unit	= 1 bult	o							
	Watts _{BASE}		ige wattage			•	ts)			
	Watts _{LED}		ige wattage			• •				
	EISA% _{LED}						r EISA baseli	ine updates		
	Hours		ige daily op		-	• • • • •				
	1,000		ersion: 1,00			W				
	365		ersion: 365							
	HPD _{RES}				-		ntial setting (0()	
	%RES		•				ed in residen	•	%)	
	HPY _{сомм} %COMM		-	-	-		mercial setti ed in comme		(0/)	
EFFICIENCY ASSUMPTIONS	%COIVIIVI	- Share	oi buib pu	rcnase	s that a			i cial setting	(70)	
Baseline Efficiency	Incandoco	ent/Halogen b	wilb							
Efficient Measure		TAR [®] certified								
PARAMETER VALUES (DEEN		TAK Certineu								
	Watts _{BASE}	Watts _{LED}	нрп	нру	,	%RES	%COMM	EISA% _{LED}	Life (yrs)	Cost (\$)
LED Bulb	63 ¹⁷	12 ¹⁸	HPD _{RES} 2.04 ¹⁹	27	<u>сомм</u> 72 ²⁰	96% ²¹	4% ²¹	66.6% ²²	15 ²³	9.61 ²⁴
	0.5	14	2.07	5,7	, _	5070	7/0	00.070	1.5	5.01
Measure		ISR	RRE		R	R _D	CFs	CFw	FR	SO
LED Bulb	73% (first year) 1 & lifetime) ¹²	100%)% ²⁵	9.6% ¹³	20.2% ¹		0% ²⁶

¹⁶ ENERGY STAR[®] LED Light Bulbs Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=iledl.pr_key_product</u>

¹⁷ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 19. The baseline wattage for LED bulbs is assumed to be the same as the average baseline wattage determine in the CFL evaluation. The weighted average baseline wattage in Table 18 is 63 Watts per bulb.

¹⁸ The average LED wattage is calculated using EMT program sales data from July 1, 2012 through June 30, 2013. Memo: Information Regarding 2015 Draft TRM, August 6, 2014, Seth Craigo-Snell, Ph.D., Applied Proactive Technologies, Inc to Andy Meyer and Laura Martel, Efficiency Maine Trust ¹⁹ Ibid, page 20.

²⁰ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

²¹ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 71.

²² See Appendix C, Table C-5; value for EMT Program Year 2015.

²³ Although LEDs have a rated lifetime of 25,000 hours, EMT assumes 15 year measure life for LED bulbs based on a review of other program TRMs (MI, RTF, PA, IN, VT, DEER) which have LED measure lives ranging from 8 to 20 years).

²⁴ Based on retail pricing estimates and program data compiled by Applied Proactive Technologies, Inc. Memo: Information Regarding 2015 Draft TRM, August 6, 2014, Seth Craigo-Snell, Ph.D., Applied Proactive Technologies, Inc to Andy Meyer and Laura Martel, Efficiency Maine Trust

²⁵ Realization rates are 100% since deemed gross savings values are based on evaluation results and estimates using program data.

²⁶ In 2012, the saturation (% bulbs per home) of LED bulbs was 0.0%: The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 8. Due to the high cost and low saturation of LED bulbs, EMT assumes 0% for free-ridership and spillover. This assumption is consistent with the Massachusetts 2013-2015 TRM.

Refrigerator										
Last Revised Date	7/1/2014									
MEASURE OVERVIEW	•									
Description	ENERGY STA	R [®] Refrigerator	r. This measu	ure involves th	e purchase a	nd installa	tion of a new	ENERGY		
	STAR [®] certif	TAR [®] certified refrigerator in place of a new code-compliant or standard efficiency refrigerator.								
		STAR [®] key effi								
	energy effici	ient than the m	inimum fede	eral standard. ²	⁷ A list of ce	rtified ENE	RGY STAR® re	efrigerators is		
	available at:	http://downlog	ads.energyst	ar.gov/bi/qpli	st/refrigerat	ors.xls				
Primary Energy Impact	Electric									
Sector	Residential									
Program(s)	Appliance Re	ebate Program								
End-Use	Refrigeration	n								
Decision Type	New Constru	uction, Replace	on Burnout							
DEEMED GROSS ENERGY SA										
Demand savings	$\Delta kW_{SP} = 0$.015 ²⁸								
	$\Delta kW_{WP} = 0.$.017 ²⁹								
Annual energy savings	Δ kWh/yr =	= 112								
GROSS ENERGY SAVINGS AL	GORITHMS (U	INIT SAVINGS)								
Demand savings	$\Delta kW_{SP} = I$	Deemed based	on evaluated	d results						
	$\Delta kW_{WP} = I$	Deemed based	on evaluate	d results						
Annual energy savings	Δ kWh/yr =	- (kWh _{BASE} - kWl	h _{EE}) x ISA x F	RATIO _{BASE}						
Definitions	kWh _{BASE}	= Average ar	nnual energy	consumption	for baseline	models (k	Wh/yr)			
	kWh _{EE}	= Average ar	nnual energy	consumption	for ENERGY	STAR [®] mo	dels (kWh/yr))		
	ISA	= In-situ adju	ustment fact	or (%)						
	RATIO _{BASE}	= Adjustmen	nt factor to a	ccount for bas	seline update	e (%)				
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency		refrigerator that	t meets the	current federa	ıl minimum e	fficiency r	equirement, e	effective		
	September 1	15, 2014 ³⁰								
Efficient Measure	ENERGY STA	R [®] certified ref	rigerator							
PARAMETER VALUES (DEEM	ED)									
Measure	kWh _{BASE}	kWh _{EE}	ISA	RATIO _{BASE}	Life (yrs)	Cost (\$)				
Refrigerator	583.43 ³¹	453.62 ³¹	98.8% ³²	87% ³³	12 ³¹	40 ³¹				
IMPACT FACTORS		•	ι							
Measure	ISR	RR _E	RR _D	CFs		CFw	FR	SO		
Refrigerator	100% ³⁴	100% ³⁵	100% ³⁵	100% ³⁶	10	0% ³⁶	67.8% ³⁷	3.3% ³⁷		

²⁷ ENERGY STAR[®] Refrigerators and Freezers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators</u>

²⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, page 30.

²⁹ Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

³⁰ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

³¹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, page 27.

³² Ibid., page 28. The in-situ adjustment (ISA) factor is a correction factor applied to a refrigerator's rated kWh consumption to reflect real world conditions, such as door openings, food in the refrigerators, internal temperature settings, and ambient conditions. The ISA factor for refrigerators was derived by comparing the *actual* (metered) kWh consumption with the *rated* kWh consumption; the ratio of each refrigerator's actual metered kWh consumption to its rated kWh consumption was calculated and averaged to calculate the ISA factor.

³³ Percent reduction in rated annual energy consumption for 2015 Federal Standard compared to 2001 Federal Standard; calculations based on weighted average of refrigerator types/configurations.

³⁴ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

³⁵ Realization rates are 100% since savings estimates are based on evaluation results.

³⁶ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

³⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Freezer											
Last Revised Date	7/1/2014										
MEASURE OVERVIEW											
Description	certified freeze key efficiency c minimum fede	ENERGY STAR® Freezer. This measure involves the purchase and installation of a new ENERGY STA Pertified freezer in place of a new code-compliant or standard efficiency freezer. The ENERGY STA Stey efficiency criteria requires that full-size freezers be at least 10% more energy efficient than the ninimum federal standard. ³⁸									
		d ENERGY STAR									
Duine and Excerning to a st	· · · ·	ads.energystar.g	<u>ov/bi/qplist/Free</u>	ezers%20Produc	<u>t%20List.xis</u>						
Primary Energy Impact	Electric										
Sector	Residential										
Program(s)	Appliance Reba	ate Program									
End-Use	Refrigeration	ion Donlass on I	Durnout								
Decision Type		ion, Replace on I	Burnout								
DEEMED GROSS ENERGY SAV Demand savings											
	$\Delta kW_{SP} = 0.01$ $\Delta kW_{WP} = 0.01$	11									
Annual energy savings	$\Delta kWh/yr = 7$										
GROSS ENERGY SAVINGS ALG	ORITHMS (UNIT	SAVINGS)									
Demand savings	$\Delta kW_{SP} = \Delta kV$	$N_{SP-Refrig}x$ (ΔkWh	$_{\sf FREEZER}$ / $\Delta {\sf kWh}_{\sf REF}$	RIG)							
		$\Delta kW_{WP} = \Delta kW_{WP-Refrig} \times (\Delta kWh_{FREEZER} / \Delta kWh_{REFRIG})$									
Annual energy savings	$\Delta kWh/yr = \Delta$	kWh _{FREEZER} x RAT	TO _{BASE}								
Definitions	Unit= 1 Freezer $\Delta kWh_{FREEZER}$ = Average annual energy savings for ENERGY STAR® freezer compared to non- certified models (kWh/yr) ΔkWh_{REFRIG} = Average annual energy savings for ENERGY STAR® refrigerator compared to non- certified models (kWh/yr) $\Delta kW_{SP-Refrig}$ = Average annual energy savings for ENERGY STAR® refrigerator compared to non- certified models (kWh/yr) $\Delta kW_{SP-Refrig}$ = Evaluated summer peak demand reduction for Refrigerator measure (kW) $\Delta kW_{WP-Refrig}$ = Evaluated winter peak demand reduction for Refrigerator measure (kW) $A kTIO_{BASE}$ = Adjustment factor to account for baseline update (%)										
EFFICIENCY ASSUMPTIONS											
Baseline Efficiency		ential freezer tha mber 15, 2014 ³⁹		rent federal mir	imum efficiency	y requiremen	it,				
Efficient Measure		certified freezer	r								
PARAMETER VALUES (DEEME	D)		1		1						
Measure	$\Delta kWh_{FREEZER}$	RATIO _{BASE}	ΔkWh_{REFRIG}	$\Delta kW_{SP-Refrig}$	$\Delta kW_{WP-Refrig}$	Life (yrs)	Cost (\$				
ENERGY STAR [®] Freezer	83 ⁴⁰	87% ⁴¹	129.8 ⁴²	0.01542	0.01742	12 ⁴⁰	10 ⁴⁰				
IMPACT FACTORS											
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO				
ENERGY STAR [®] Freezer	$100\%^{43}$	$100\%^{44}$	$100\%^{44}$	100% ⁴⁵	100%45	65.5% ⁴⁶	3.3% ⁴⁶				

³⁸ ENERGY STAR[®] Refrigerators and Freezers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators</u>

³⁹ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

⁴⁰ United States Environmental Protection Agency (USEPA), ENERGY STAR Appliance Savings Calculator, August 2012. Annual energy savings are based on Upright Freezer (Automatic Defrost) unit with EPA assigned default values. Annual energy savings for other freezer types range from 49 kWh/yr to 114 kWh/yr with an average of 76 kWh/yr.

⁴¹ Percent reduction in rated annual energy consumption for 2015 Federal Standard compared to 2001 Federal Standard; adopted value for refrigerators.

⁴² See Refrigerator measure entry

⁴³ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

⁴⁴ Realization rates are 100% since savings estimates are based on evaluation results.

⁴⁵ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁴⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Room Air Conditione	r									
Last Revised Date	7/1/2014									
MEASURE OVERVIEW										
Description	STAR [®] certified ro conditioner. The more energy effic	IERGY STAR [®] Room AC (RAC). This measure involves the purchase and installation of a new ENERGY AR [®] certified room air conditioner in place of a new code-compliant or standard efficiency room air nditioner. The ENERGY STAR [®] key efficiency criteria require that room air conditioners be at least 10% ore energy efficient than the minimum federal standards. ⁴⁷								
	http://downloads	s.energystar.g	ov/bi/qplist/R		Air%20Cond	litioners%	20Product%20Lis	st.xls		
Primary Energy Impact	Electric									
Sector	Residential									
Program(s)	Appliance Rebate	Program								
End-Use	Cooling									
Decision Type	New Construction	n, Replace on	Burnout							
DEEMED GROSS ENERGY	SAVINGS (UNIT SA	VINGS)								
Demand savings	$\Delta kW = 0.02$	24								
Annual energy savings	$\Delta kWh/yr = 2$									
GROSS ENERGY SAVINGS	ALGORITHMS (UN	IIT SAVINGS)								
Demand savings	$\Delta kW = CAP_{EE} x (1)$	$/ EER_{BASE} - 1 /$	/ EER _{EE}) / 1000							
Annual energy savings	$\Delta kWh/yr = CAP$	EE X (1 / EERBAS	_{SE} – 1 / EER _{EE}) /	1000 x E	FLH					
Definitions		1 room air co								
	CAP _{EE} =	Average capa	city of installe	d room ai	r condition	er (Btu/h))			
							tioner (Btu/h/Wa			
		0,	,				ir conditioner (Bt	:u/h/Watt)		
	EFLH =	Equivalent fu	ll load hours fo	or room ai	ir conditior	ier (hrs/yr	-)			
		Conversion: 1	.000 Watts per	[·] kW						
EFFICIENCY ASSUMPTION	-									
Baseline Efficiency	Standard room ai June 1, 2014 ⁴⁸	r conditioner	that meets the	e current	federal mir	nimum eff	iciency requirem	ent effective		
Efficient Measure	ENERGY STAR® ce	ertified room a	air conditioner							
PARAMETER VALUES (DE	EMED)									
Measure	CAP _{EE}	EER _{BASE}	EE	R _{EE}	EFLH	-	Life (yrs)	Cost (\$)		
ENERGY STAR [®] RAC	10,000 ⁴⁹	11.0 ⁴⁹	11.	3 ⁵⁰	102	51	9 ⁴⁹	50 ⁴⁹		
IMPACT FACTORS	•		·					-		
Measure	ISR	RR _E	RR _D	C	Fs	CF_W	FR	SO		
ENERGY STAR [®] RAC	100% ⁵²	100.0% ⁵³	100.0% ⁵³	11.1	L% ⁵⁴	0.0% ⁵⁴	65.5% ⁵⁵	3.3% ⁵⁵		

⁴⁷ ENERGY STAR[®] Room Air Conditioners Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac</u>

⁴⁸ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

⁴⁹ Minimum EER for code-compliant room air conditioner effective June 1, 2014.

⁵⁰ ENERGY STAR[®] requirement for room air conditioner as of October 2013.

⁵¹ RLW Analytics, Coincidence Factor Study Residential Room Air Conditioners, June 2008; Table i-2. Values are based on TMY2 weather for Portland, Maine.

⁵² EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

⁵³ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁵⁴ See Appendix B: Coincidence and Energy Period Factors.

⁵⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Room Air Purifier										
Last Revised Date	7/1/2014									
MEASURE OVERVIEW										
Description	of a new EN standard ef purifiers ha A list of cer	IERGY STAR [®] certified room air purifier (RAP). This measure involves the purchase and installation a new ENERGY STAR [®] certified room air purifier (also called room air cleaners) in place of a andard efficiency room air purifier. The ENERGY STAR [®] key efficiency criteria require that room air rifiers have a minimum efficiency of 2.0 CADR/Watt and maximum standby power of 2.0 Watts. ⁵⁶ ist of certified ENERGY STAR [®] room air purifiers is available at: tp://downloads.energystar.gov/bi/qplist/Room_Air_Cleaners_Qualified_Product_List.xls								
Primary Energy Impact	Electric									
Sector	Residential									
Program(s)	Appliance F	Rebate Progra	m							
End-Use	Appliance									
Decision Type		ruction, Repla	ce on Burnou	t						
DEEMED GROSS ENERGY SAV		SAVINGS)								
Demand Savings	∆kW	= 0.128								
Annual Energy Savings		= 745								
GROSS ENERGY SAVINGS AL		UNIT SAVING	5)							
Demand Savings	Δ kW		$EF_{BASE} - 1/EF_{ES}$							
Annual Energy Savings	∆kWh/yr			_s) × Hours + (SBP _{BASE} – SI	3P _{ES}) × (8,760	– Hours)] / 100	00		
Definitions	Unit	= 1 room air								
	CADR	= Rated Clear		• •						
	EF _{BASE}	= Rated effici	•	•		_				
	EF _{ES}	= Rated effici				/att)				
	SBP _{BASE}	= Rated stand								
	SBP _{ES}	= Rated stand	•		(Watts)					
	Hours	= Annual ope	-)				
	8,760 1.000	= Total hours	: 1,000 Watts	-	365 days/y	ear)				
EFFICIENCY ASSUMPTIONS	1,000	- Conversion	. 1,000 Walls	регки						
Baseline Efficiency	Convention	al model with	CADR - 183		-10 and s	andby nower	- 1 0 Watts			
Efficient Measure		ailable ENERG			- 1.0, and 3		- 1.0 Watts			
PARAMETER VALUES (DEEM				neu mouer						
Measure	CADR	EF _{BASE}	SBP _{BASE}	EF _{ES}	SBP _{ES}	Hours	Life (yrs)	Cost (\$)		
ENERGY STAR [®] RAP	183 ⁵⁷	1.0 ⁵⁸	1.0 ⁵⁸	3.3 ⁵⁷	0.6 ⁵⁷	5,840 ⁵⁹	9 ⁶⁰	0 ⁶¹		
IMPACT FACTORS				2.3	2.0	0,010				
Measure	ISR	RR _F	RR _D	CFs		CFw	FR	SO		
ENERGY STAR [®] RAP	100% ⁶²	100%63	100%63	66.7% ⁶	4 f	6.7% ⁶⁴	65.5% ⁶⁵	3.3% ⁶⁵		

⁵⁶ ENERGY STAR[®] Room Air Cleaners Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=room_airclean.pr_crit_room_airclean</u>

⁵⁷ Average of qualified units on ENERGY STAR[®] QPL (accessed 3/31/2013).

⁵⁸ EPA Research based on available models, 2011 (from ENERGY STAR® Appliance Savings Calculator, accessed 3/31/2013).

⁵⁹ Assume average 16 hours per day operating (from ENERGY STAR® Appliance Savings Calculator, accessed 3/31/2013).

⁶⁰ Appliance Magazine, Portrait of the U.S. Appliance Industry 1998 (from ENERGY STAR[®] Appliance Savings Calculator, accessed 3/31/2013).

⁶¹ EPA Research based on available models, 2012 (from ENERGY STAR® Appliance Savings Calculator, accessed 3/31/2013).

⁶² EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

⁶³ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁶⁴ See Appendix B: Coincidence and Energy Period Factors.

⁶⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Dehumidifier									
Last Revised Date	7/1/2014								
MEASURE OVERVIEW									
Description	ENERGY STA dehumidifie The ENERGY dehumidifie pints per da	R [®] certified r. STAR [®] key e rs < 75 pints 9. ⁶⁶	dehumidifie efficiency cri per day anc	er in place of iteria specify l a minimum	a new a mini energy	e purchase ar code-complia mum energy y factor of 2.8	nt or s factor	standard effi	ciency s/kWh for
	A list of cert								
	<u>http://down</u>	loads.energy	<u>/star.gov/bi</u>	/qplist/dehu	mid_pi	<u>rod_list.xls</u>			
Primary Energy Impact	Electric								
Sector	Residential								
Program(s)	Appliance R	ebate Progra	Im						
End-Use	Appliance								
Decision Type	New Constru		ice on Burno	out					
DEEMED GROSS ENERGY SAVING		-							
Demand savings	$\Delta kW_{WP} = 0$								
Annual energy savings	Δ kWh/yr =								
GROSS ENERGY SAVINGS ALGOR	ITHMS (UNIT	SAVINGS)							
Demand savings	$\Delta kW_{SP} = I$ $\Delta kW_{WP} = D$	Deemed base Deemed base							
Annual energy savings	Δ kWh/yr =	CAP _{EE} x 0.47	'3 x (1 / EF _{BA}	$_{SE} - 1 / EF_{EE}$)	x Hour	s / 24 x ISA			
Definitions	Unit CAP _{EE} EF _{BASE} EF _{EE} Hours 0.473 24 ISA	EF BASE= Rated Energy Factor for baseline dehumidifier (liters/kWh)EF EE= Rated Energy Factor for ENERGY STAR® dehumidifier (liters/kWh)Hours= Annual operating hours (hrs/yr)0.473= Conversion: 0.473 liters per pint24= Conversion: 24 hours per day							
EFFICIENCY ASSUMPTIONS			2						
Baseline Efficiency	October 201	.2 ⁶⁷			deral n	ninimum effic	iency r	requirement	s, effective
Efficient Measure	ENERGY STA	R [®] certified	dehumidifie	er					
PARAMETER VALUES (DEEMED)									
Measure	CAP	EF _{BASE}	EF	Hours	IS			Cost (\$)	
ENERGY STAR [®] Dehumidifier	63.4 ⁶⁸	1.65 ⁶⁸	1.85 ⁶⁸	1,632 ⁶⁹	81.6	⁶⁹ 12	68	20 ⁶⁸	
IMPACT FACTORS									
Measure	ISR	RR _E	RR _D	CFs		CF_W		FR	SO
ENERGY STAR [®] Dehumidifier	100% ⁷⁰	100% ⁷¹	100% ⁷¹	100%	72	100% ⁷²	6	65.3% ⁷³	3.3% ⁷³

⁶⁶ ENERGY STAR[®] Dehumidifiers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=dehumid.pr_crit_dehumidifiers</u>

⁶⁷ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

⁶⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-25.

⁶⁹ Ibid, page 53. The in-situ adjustment (ISA) factor is a correction factor applied to a dehumidifier's *rated* power draw to accurately represent its *actual* power draw. The ISA factor for dehumidifiers was derived by averaging the ratio of actual (metered) power draw of each metered dehumidifier to its rated power draw. ⁷⁰ Ibid, page 51.

⁷¹ Realization rates are 100% since savings estimates are based on evaluation results.

⁷² Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁷³ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-42.

Dishwasher	
Last Revised Date	7/1/2014
MEASURE OVERVIEW	
Description	ENERGY STAR [®] Dishwashers. This measure involves the purchase and installation of a new ENERGY STAR [®] certified dishwasher in place of a new code-compliant or standard efficiency dishwasher. The current ENERGY STAR [®] requirements, effective as of January 20, 2012, specify a maximum 295 kWh/year and minimum 4.25 gallons/cycle. ⁷⁴
	The associated water heater may be electric or non-electric. The deemed unit energy savings are weighted averages based on the percentages of homes with electric and non-electric water heaters.
	A list of certified ENERGY STAR [®] dishwashers is available at: <u>http://downloads.energystar.gov/bi/gplist/Dishwashers%20Product%20List.xls</u>
Primary Energy Impact	Electric (additional impacts include: natural gas, heating oil, propane and water)
Sector	Residential
Program(s)	Appliance Rebate Program
End-Use	Process
Decision Type	New Construction, Replace on Burnout
GROSS ENERGY SAVINGS (UN	
Demand Savings	ΔkW = 0.159
Annual Energy Savings	$\Delta kWh/yr = 33$
6, 6	$\Delta MMBtu_{GAS}/yr = 0.0$
	$\Delta MMBtu_{OIL}/yr = 0.1$
	$\Delta MMBtu_{PROP}/yr = 0.0$
Annual water savings	$\Delta Gallons/yr = 468$
GROSS ENERGY SAVINGS ALC	
Demand savings	$\Delta kW = \Delta kWh/yr / Hours$
Annual energy savings	
Annual energy savings	$\Delta kWh/yr = (kWh_{BASE} - kWh_{EE}) / RCycles \times Cycles \times [(1 - \%E_{HW}) + (\%E_{HW} \times \%HW_{ELEC})]$
	$\Delta MMBtu_{GAS}/yr = (kWh_{BASE} - kWh_{EE}) / RCycles \times Cycles \times \%E_{HW} \times 0.003413 / Eff_{GAS} \times \%HW_{GAS}$
	$\Delta MMBtu_{OIL}/yr = (kWh_{BASE} - kWh_{EE}) / RCycles \times Cycles \times \%E_{HW} \times 0.003413 / Eff_{OIL} \times \%HW_{OIL}$
A served waters and in the	$\Delta MMBtu_{PROP}/yr = (kWh_{BASE} - kWh_{EE}) / RCycles \times Cycles \times \%E_{HW} \times 0.003413 / Eff_{PROP} \times \%HW_{PROP}$
Annual water savings	$\Delta Gallons/yr = (WC_{BASE} - WC_{EE}) \times Cycles$
Definitions	Unit = 1 dishwasher
	kWh _{BASE} = Rated annual energy use of baseline dishwasher (kWh/yr)
	kWh _{EE} = Rated annual energy use of ENERGY STAR [®] dishwasher (kWh/yr)
	RCycles = Rated dishwasher cycles per year (cycles/yr)
	Cycles = Annual dishwasher cycles (cycles/yr)
	Hours = Annual operating hours (hrs/yr)
	%E _{HW} = Percentage of dishwasher energy used for water heating (%)
	%HW _{ELEC} = Percentage of homes with electric water heating (%)
	%HW _{GAS} = Percentage of homes with natural gas water heating (%)
	%HW _{oll} = Percentage of homes with oil water heating (%)
	%HW PROP= Percentage of homes with propane or LNG water heating (%)Eff GAS= Efficiency of existing gas-fired water heaters (%)
	$Eff_{OIL} = Efficiency of existing gas-filed water heaters (%)$
	Eff _{PROP} = Efficiency of existing propane-fired water heaters (%)
	WC_{BASE} = Rated water consumption per cycle for the baseline dishwasher (gallons/cycle)
	WC _{BASE} = Rated water consumption per cycle for the ENERGY STAR® dishwasher (gallons/cycle)
	0.003413 = Conversion factor: 0.003413 MMBtu per kWh
EFFICIENCY ASSUMPTIONS	<u> </u>
Baseline Efficiency	Standard dishwasher that meets the current federal minimum efficiency requirement, effective May
Buschine Entitienty	2013. The requirement states that Standard size dishwashers shall not exceed 355 kwh/year and 6.5

⁷⁴ ENERGY STAR[®] Dishwashers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=dishwash.pr_crit_dishwashers</u>

Dishwasher												
	gallons per	cycle.75										
Efficient Measure	ENERGY ST	AR [®] certified	d dishwash	er								
PARAMETER VALUES (DEEMED)												
Measure	kWh _{BASE}	kWh _{EE}	RCycles	C	Cycles Ho		WC _{BASE}	WC _{EE}		%Е _{нм}	,	
ENERGY STAR [®] Dishwasher	355 ⁷⁶	295 ⁷⁶	215 ⁷⁶	2	208 ⁷⁶ 208 ⁷⁷		6.5 ⁷⁶	4.25 ⁷⁶		56% ⁷	5	
Measure	%HW _{ELEC}	%HW _{GAS}	%HW _{OIL}	%⊦	%HW _{PROP} Ef		Eff _{oil}	Eff _{PROP}		Life (yr	s) Cos	t (\$)
ENERGY STAR [®] Dishwasher	23% ⁷⁸	10% ⁷⁸	53% ⁷⁸	Q	€% ⁷⁸	75% ⁷⁶	75% ⁷⁹	75%	6 ⁷⁹	10 ⁷⁶	10) ⁷⁶
IMPACT FACTORS												
Measure	ISR	RR _E	RR	D	CFs		CFw		FR		SO	
ENERGY STAR [®] Dishwasher	$100\%^{80}$	100% ⁸¹	100%	6 ⁸¹	2.2	2% ⁸²	4.0% ⁸²		54.9% ⁸³		3.3%	33

⁷⁵ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

⁷⁶ United States Environmental Protection Agency (USEPA), ENERGY STAR Appliance Savings Calculator, August 2012.

⁷⁷ Assume that each cycle is 1 hour so the total operating hours is equal to the total number of cycles.

⁷⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-15

⁷⁹ Values are assumed to be the same as a gas-fired water heater.

⁸⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

⁸¹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁸² See Appendix B: Coincidence and Energy Period Factors.

⁸³ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-42; used program average.

Clothes Washer									
Last Revised Date	7/1/2014								
MEASURE OVERVIEW									
Description	ENERGY STAR [®] clothes washer. This measure involves the purchase and installation of a new ENERGY STAR [®] certified clothes washer in place of a new code-compliant or standard efficiency clothes washer. The current ENERGY STAR [®] requirements, effective as of February 1, 2013, specify a minimum Modified Energy Factor (MEF) of 2.0 and maximum water factor (WF) of 6.0. ⁸⁴								
	The associated water heater and clothes dryer may be electric or non-electric. The deemed unit energy savings are weighted averages based on percentages of homes with electric and non-electric water heaters and clothes dryers.								
	A list of certified ENERGY STAR [®] clothes washers is available at: <u>http://www.energystar.gov/productfinder/product/certified-clothes-washers/</u>								
Primary Energy Impact	Electric (additional impacts include: natural gas, heating oil, propane and water)								
Sector	Residential								
Program(s)	Appliance Rebate Program								
End-Use	Process								
Decision Type	New Construction, Replace on Burnout								
DEEMED GROSS ENERGY SAV									
Demand savings	$\Delta k W_{SP} = 0.055^{85}$ $\Delta k W_{WP} = 0.073^{86}$								
Annual energy savings	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Annual water savings	$\Delta Gallons/yr = 4,299$								
GROSS ENERGY SAVINGS ALG									
Demand savings	$\Delta k W_{SP}$ = Deemed based on evaluated results $\Delta k W_{WP}$ = Deemed based on evaluated results								
Annual energy savings	$ \begin{array}{ll} \Delta k Wh/yr &= \Delta k Wh_{MACHINE} + \Delta k Wh_{HW} \times \% HW_{ELEC} + \Delta k Wh_{DRYER} \times \% Dryer_{ELEC} \times \% Dried \\ \Delta MMBtu_{GAS}/yr &= (\Delta k Wh_{HW} \times \% HW_{GAS} + \Delta k Wh_{DRYER} \times \% Dryer_{GAS} \times \% Dried) \times 0.003412 \ / \ Eff_{GAS} \\ \Delta MMBtu_{OIL}/yr &= \Delta k Wh_{HW} \times \% HW_{OIL} \times 0.003412 \ / \ Eff_{OIL} \\ \Delta MMBtu_{PROP}/yr &= \Delta k Wh_{HW} \times \% HW_{PROP} \times 0.003412 \ / \ Eff_{PROP} \end{array} $								
	Where: $\Delta kWh_{MEF} = CAP_{EE} \times (1/MEF_{BASE} - 1/MEF_{EE}) \times Loads$ $\Delta kWh_{MACHINE} = \Delta kWh_{MEF} \times \%E_{MACHINE}$ $\Delta kWh_{HW} = \Delta kWh_{MEF} \times \%E_{HW}$ $\Delta kWh_{DRYER} = \Delta kWh_{MEF} \times \%E_{DRYER}$								
Annual water savings	$\Delta Gallons/yr = CAP_{EE} \times (WF_{BASE} - WF_{EE}) \times Loads$								

 ⁸⁴ ENERGY STAR[®] Clothes Washers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=clotheswash.pr_crit_clothes_washers</u>
 ⁸⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, page 45.
 ⁸⁶ Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

Clothes Washer														
Definitions	Unit	= 1 clo	thes washer											
	$\Delta kWh_{MACHINE}$	= Annu	ial washer ma	achine energ	y savings (l	(Wh/yr)								
	ΔkWh_{HW}			-		ings (kWh/yr)								
	ΔkWh_{DRYER}		al electric dry	-	•.									
	%HW _{ELEC}		entage of hon											
	%Dryer _{ELEC}		entage of hon			-								
	MEF _{BASE}					e model (ft ³ /k\	Wh/cycle)							
	MEFEE					-	(ft ³ /kWh/cycle	e)						
	Loads		ner loads per					,						
	%E _{MACHINE}					ergy used for w	asher machine	energy						
	%E _{HW}						ater heating ei							
	%E _{DRYER}						ne clothes drye							
	%Dried					d in dryer (%)								
	CAP _{EE}		d capacity of											
	%HW _{GAS}													
	%HW _{OIL}													
	%HW _{PROP}													
	%HW _{OTHER}													
	%Dryer _{GAS}													
	%Dryer _{PROP}		-	-	-	G clothes drye	rs (%)							
	Eff _{GAS}	= Effici	ency of existi	ng gas-fired	water heat	ers (%)								
	Eff _{OIL}		ency of existi											
	Eff _{PROP}		ency of existi	-										
	WF _{BASE}	= Rate	d water facto	r for the bas	eline clothe	es washer (gall	ons/cycle/ft ³)							
	WFEE					. –	er (gallons/cycl	e/ft ³)						
	0.003413		ersion factor											
EFFICIENCY ASSUMPTIONS														
Baseline Efficiency	Standard clo	thes washer	. The current	federal stan	dard requii	res a minimum	Modified Ener	gy Factor						
	(MEF) of 1.20	5 and maxim	ium water fac	tor (WF) of s	9.5. These	standards are v	alid for clothe	s washers						
	manufacture	d on or afte	r January 1, 2	011 and befo	ore March	7, 2015. ⁸⁷								
Efficient Measure	ENERGY STA	R [®] certified	clothes washe	er.										
PARAMETER VALUES (DEEME	D)													
Measure	CAP _{EE}	MEF _{BASE}	MEF	Loads	%E _{DRYER}									
	3.81 ⁸⁸	1.26 ⁸⁷	2.61 ⁸⁸	322.4 ⁸⁹	72.2% ⁹⁰)								
	%E _{MACHINE}	%E _{HW}	%Dried	%HW _{ELEC}	%Dryer _{ELI}		WF _{BASE}	WF _{EE}						
ENERGY STAR [®] CW	3.5% ⁹⁰	24.3% ⁹⁰	100% ⁹¹	23% ⁹²	89.6% ⁹³	7.8% ⁹³	9.5 ⁸⁷	6.0 ⁹⁴						
	%HW _{GAS}	%HW _{OIL}	%HW _{PROP}	Eff _{GAS}	Eff _{OIL}	Eff _{PROP}	Life (yrs)	Cost (\$)						
	10% ⁹²	53% ⁹²	9% ⁹²	75% ⁹⁵	75% ⁹⁵	75% ⁹⁵	11 ⁹⁶	50 ⁹⁷						
IMPACT FACTORS	10/0	5570	3,0	, , , , ,	, 570	, 370	**							
Measure	ISR	RR _E	RRD		CFs	CFw	FR	SO						
ENERGY STAR® CW	100% ⁹⁸	100%99	100%	⁹⁹ 10	0% ¹⁰⁰	100% ¹⁰⁰	56.7% ¹⁰¹	3.3% ¹⁰¹						
	10070	10070	10070	, 10	070	10070	50.770	5.570						

⁸⁷ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C. The code specifies MEF \geq 1.26 and WF \leq 9.5lo.

⁸⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-13.

⁸⁹ Ibid., Table 2-14.

⁹⁰ Ibid., Table 2-17.

⁹¹ Ibid., page 40: consistent with implicit assumption used in the savings algorithm for clothes washers.

⁹² Ibid., Table 2-15.

⁹³ Ibid., Table 2-16.

⁹⁴ Ibid., Table 2-10: minimum WF for ENERGY STAR v5.0 qualification.

⁹⁵ EMT assumes 75% efficiency for existing fossil fuel-fired water heaters.

⁹⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-18.

⁹⁷ EPA Research based on available models, 2013 (from ENERGY STAR® Appliance Savings Calculator, accessed 7/1/2014).

⁹⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, page 38.

⁹⁹ Realization rates are 100% since savings estimates are based on evaluation results.

¹⁰⁰ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

¹⁰¹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41

High Efficiency Electric W	ater Heat	er											
Last Revised Date	7/1/2014	1											
MEASURE OVERVIEW	•												
Description	purchase standard	and insta efficiency	llation of a electric wa	new high-eff ater heater. 1	iciency elect his measure		in place of a co ble for participa	volves the ode-compliant or ation in Efficiency					
Primary Energy Impact	Electric												
Sector	Resident	ial											
Program(s)	Applianc	iance Rebate Program											
End-Use	Domestic	: Hot Wate	er										
Decision Type	New Con	struction,	Replace or	n Burnout									
DEEMED GROSS ENERGY SA	VINGS (UN	NIT SAVING	GS)										
Demand Savings	Δ kW	= 0.073											
Annual Energy Savings	∆kWh/yr	yr = 184											
GROSS ENERGY SAVINGS AL	GORITHM	S (UNIT SA	AVINGS)										
Demand Savings	$\Delta kW = \Delta$	$kW = \Delta kWh/yr / Hours$											
Annual Energy Savings	∆kWh/yr	Wh/yr = GPD × 365 × ρ_{H2O} × Cp _{H2O} / 3,413 × (T _{WH} – T _{in}) × (1/EF _{BASE} – 1/EF _{HE})											
Definitions	Unit GPD T _{in} T _{WH} EF _{BASE} EF _{HE} ρ _{H20} Cp _{H20} Hours 365 3,413	Unit= 1 water heaterGPD= Average daily hot water consumption (gallons/day) T_{in} = Temperature of water mains (water into the water heater) (°F) T_{WH} = Water heater temperature set point (°F)EF _{BASE} = Energy factor for baseline electric water heaterEF _{HE} = Energy factor for high-efficiency electric water heater p_{H2O} = Density of water (8.33 lb/gallon) Cp_{H2O} = Specific heat of water (1 Btu/lb/°F)Hours= Annual operating hours for water heater (hrs/yr)365= Conversion: 365 days per year											
EFFICIENCY ASSUMPTIONS													
Baseline Efficiency			al water he gallon unit)		rent federal	standard require	es a minimum A	AHRI Energy					
Efficient Measure	The reba 0.95.	ted electri	ic water he	ater must ha	ve an AHRI E	nergy Factor tha	at is greater tha	n or equal to					
PARAMETER VALUES (DEEM	IED)												
Measure	GPD	T _{in}	Т _{WH}	EF _{BASE}	EF _{HE}	Hours	Life (yrs)	Cost (\$)					
Electric Water Heater	51.1 ¹⁰³	50.8 ¹⁰⁴	126.2 ¹⁰⁵	0.904 ¹⁰	⁶ 0.95 ¹⁰⁷	2,533 ¹⁰⁸	10 ¹⁰⁹	160 ¹¹⁰					
IMPACT FACTORS	ı					1	1	1					
Measure	ISR	RR	E	RR _D	CFs	CFw	FR	SO					
Electric Water Heater	100% ¹¹¹	100%	/ ¹¹²	100% ¹¹²	9.6% ¹¹³	13.3% ¹¹³	0% ¹¹⁴	0% ¹¹⁴					

¹⁰² Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

¹⁰⁶ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C. Value is calculated for 50-gallon water heater.

¹¹² This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁰³ GPD is calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996.

¹⁰⁴ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

¹⁰⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014; adopted value for heat pump water heaters.

¹⁰⁷ This value is the minimum qualification requirement for program rebate.

¹⁰⁸ Full load hours assumption based on Efficiency Vermont loadshape, calculated from Itron eShapes (Adopted from Ohio TRM, page 87).

¹⁰⁹ NREL, National Residential Efficiency Measures Database.

¹¹⁰ Incremental cost for 50-gallon unit, based on water heater cost research conducted by Cadmus, June 2013.

¹¹¹ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

¹¹³ See Appendix B.

¹¹⁴ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Heat Pump Water Hea	ter											
Last Revised Date	7/1/2014											
MEASURE OVERVIEW												
Description	installation of a new ENE efficiency electric water A list of certified ENERG	RGY STAR [®] certified HP\ heater. Savings are coun / STAR [®] heat pump wate	rs (HPWH). This measure ir WH in place of a new code- ted only for the improved r heaters is available at: <u>r Heaters Product List.xls</u>	compliant or standard water heater efficiency. ¹¹⁵								
Primary Energy Impact	Electric											
Sector	Residential											
Program(s)	Appliance Rebate Progra	m										
End-Use	Domestic Hot Water											
Decision Type	New Construction, Repla	ice on Burnout										
DEEMED GROSS ENERGY S	AVINGS (UNIT SAVINGS)											
Demand Savings	ΔkW_{SP} = 0.175											
	$\Delta kW_{WP} = 0.374$											
Annual Energy Savings	Δ kWh/yr = 1,687											
GROSS ENERGY SAVINGS A												
Demand Savings	ΔkW_{SP} = Summer Peak k ΔkW_{WP} = Winter Peak kW		field-evaluation study ¹¹⁶ Heater field-evaluation stud	dv ¹¹⁶								
Annual Energy Savings			from a HPWH field-evalua									
	 Typical hot water con Massachusetts and RI Typical HPWH setpoir setpoint temperature Most, if not all, of EM spaces (i.e. regulated the evaluation¹²⁰ 	EMT's in-program HPWF sumption for Maine hou node Island households r it temperature in Maine in Massachusetts and RI T's in-program HPWHs w	netered in the evaluation. ¹ households is expected to node Island households me <i>i</i> ill be installed in condition	ne hot water consumption in ¹⁸ be comparable to the								
EFFICIENCY ASSUMPTIONS				124								
Baseline Efficiency			an AHRI Energy Factor = 0.	904.121								
Efficient Measure	ENERGY STAR [®] certified	model (EF ≥ 2.0)										
PARAMETER VALUES (DEEL	MED)											
Measure			Life (yrs)	Cost (\$)								
ENERGY STAR [®] HPWH			10 ¹²²	680 ¹²³								

¹¹⁵ Interactive impacts on cooling, heating and humidification energy are assumed to be negligible due to the short cooling season in Maine and the expectation that most water heaters are not located in conditioned spaces. EMT will re-evaluate this assumption as more data and evaluation results are available. ¹¹⁶ Steven Winters Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012. Table 1

¹¹⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-31; at least 89% of HPWH units in EMT program are 50 gallons units (with the remaining 11% with unknown tank size). Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012 included 10 units with 50 gallon tanks; 1 unit with a 60 gallon tank; and 3 units with 80 gallon tanks.

¹¹⁸ For Maine, 51.1 GPD is used based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996. Average GPD found in the Steven Winters Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012 was 45.5 GPD.

¹¹⁹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-35; the average setpoint temperature in Maine is 126.2°F, compared to the average setpoint temperature of 127.6°F found in Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012.

¹²⁰ Considering Maine's climate (winter), it can be anticipated that most, if not all, properly installed HPWHs will be installed in fully or partially conditioned spaces. ¹²¹ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C. EF = 0.904 value is calculated for 50-gallon water heater. Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012 uses EF = 0.91 as the baseline ERWH efficiency. The two baselines are very similar; the small ΔEF is negligible, as the difference will effectively be offset by any uncertainties in the data.

¹²² NREL, National Residential Efficiency Measure Database.

Heat Pump Water Heater											
IMPACT FACTORS											
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO				
ENERGY STAR [®] HPWH	$100\%^{124}$	100% ¹²⁵	$100\%^{125}$	$100\%^{126}$	$100\%^{126}$	21.0% ¹²⁷	3.3% ¹²⁷				

 ¹²³ Incremental cost for 50-gallon unit, based on water heater cost research conducted by Cadmus, June 2013.
 ¹²⁴ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, page 60.
 ¹²⁵ Realization rates are 100% since savings estimates are based on evaluation results.
 ¹²⁶ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.
 ¹²⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Home Energy Savings Program

Custom Path												
Last Revised Date	7/1/2014 (r	ew in PY201	.5)									
MEASURE OVERVIEW	•											
Description				ole energy-efficien		t achieve at leas	st 20% e	nergy				
	savings com	ings compared to baseline annual energy consumption. ¹²⁸										
Energy Impacts	Electricity, I	ctricity, Natural Gas, Oil, Propane, Wood										
Sector	Residential											
Program(s)		gy Savings Pr	-									
End-Use	Lighting, He	ting, Heating, Cooling, Domestic Hot Water, Refrigeration, Appliances										
Decision Type	Retrofit	rofit										
DEEMED GROSS ENERGY	SAVINGS (UN	IIT SAVINGS										
Demand savings	$\Delta kW =$	NA										
Annual energy savings				ject-specific data.								
GROSS ENERGY SAVINGS			INGS)									
Demand savings	$\Delta kW =$	NA ¹²⁹										
Annual Energy savings	$\Delta kWh = \Delta N$	IMBTU × Sha	$re_{ELEC} \times (1,000)$) / 3.412)								
	Δ MMBtu _{FUE}	$L = \Delta MMBTL$	J × %FUEL									
Definitions	Unit		ustom project									
	Δ MMBTU			gs predicted using			ouilding					
				MMBtu) or other a								
	%FUEL	= Home	heating fuel d	istribution excludi	ng coal and othe	er ¹³⁰						
EFFICIENCY ASSUMPTION	1											
Baseline Efficiency				al energy consum	ption of the exis	ting home, befo	re any e	energy-				
		neasures are										
Efficient Measure				iple measures that								
			•. •	s estimate is based	d on building en	ergy simulation	using th	e RHA or				
	other appro	ved modelir	ig software.									
PARAMETER VALUES							()					
Measure	∆MMBTU	%FUEL					(yrs)	Cost (\$)				
Custom Path	Model ¹³¹	Table D-1				2	0 ¹³²	Actual				
IMPACT FACTORS												
Measure	ISR	RR _E	RR _D	CFs	CFw	FR FR		SO				
Custom Path	100%	100% ¹³³	NA	NA	NA	0% ¹³⁴		0% ¹³⁴				

¹²⁸ While not limited to any specific energy-efficiency measure, it is expected that a vast majority of projects in the HESP Custom Path will be weatherization measures that do not perfectly align with the prescriptive weatherization measures offered as part of the Home Energy Savings Program.

¹²⁹ While there may be some net kW impact associated with Custom Path measures, they are expected to be insignificant in magnitude, and therefore assumed to be negligible.

¹³⁰ Heating fuel distribution is used to allocate savings to different fuels because the vast majority of the HESP Custom Path projects are expected to be weatherization measures, which predominantly impact the home's heating energy consumption.

¹³¹ Annual energy savings are determined on a case-by-case basis by performing building energy simulations using the Real Home Analyzer (RHA) or other approved

modeling software. ¹³² 20 years is assumed by EMT. Prescriptive building envelope insulation measures in the Home Energy Savings Program have measure lives of 25 years. To account for any projects that are not weatherization measures and potentially have shorter measure lives, the measure life was adjusted down 20%, to 20 years.

¹³³ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹³⁴ The NTG for savings calculated by RHA model has not been evaluated. EMT assumes 100% NTG.

Air Sealing	
Last Revised Date	7/1/2014 (new in PY2015)
MEASURE OVERVIEW	
Description	This measure involves sealing air leaks in windows, doors, roof, crawlspaces and outside walls resulting in
	decreased heating and cooling loads.
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Kerosene
Sector	Residential
Program(s)	Home Energy Savings Program
End-Use	Heating, Cooling
Decision Type	Retrofit
DEEMED GROSS ENERGY	SAVINGS (UNIT SAVINGS)
Demand savings	$\Delta kW_{SP} = 0.766$
	$\Delta kW_{WP} = 0.000$
Annual energy savings	$\Delta kWh = 364$
	Δ MMBtu _{GAS} = 0.8
	Δ MMBtu _{OIL} = 5.7
	$\Delta MMBtu_{WOOD} = 0.7$
	$\Delta MMBtu_{PROP} = 0.5$
	Δ MMBtu _{KERO} = 0.5
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)
Demand savings	$\Delta kW = \Delta kWh_{COOL} \times LSF_{SP}$
Annual Energy savings	Δ MMBtu _{FUEL} = Δ MMBtu _{AS} x %FUEL
	$\Delta kWh = \Delta kWh_{HEAT} + \Delta kWh_{COOL}$
	ΔkWh _{HEAT} = ΔMMBtu _{AS} x 1,000 / 3.412 x %FUEL
	$\Delta kWh_{COOL} = \Delta MMBtu_{AS} \times ESR_{COOL} \times COOL \times 1,000 / 3.412$
Definitions	Unit = Air sealing project
	Δ MMBTU _{AS} = Average residential heating energy savings from air sealing measures (MMBtu)
	%FUEL = Home heating fuel distribution excluding coal and other ¹³⁵
	ESR _{COOL} = Average cooling energy savings from weatherization as a percentage of heating energy
	savings, for homes with electric cooling (%)
	%COOL = Percentage of homes with electric cooling equipment (%)
	Δ CFM50 = Average change in air leakage rate following upgrade (CFM)
	LSF _{sp} = Summer peak load shape factor (kW/kWh/yr)
	3.412 = Conversion: 3.412 kBtu/kWh
EFFICIENCY ASSUMPTION	1,000 = Conversion: 1,000 kBtu/MMBtu
Baseline Efficiency	The baseline case is the existing home before the air-sealing measures are installed. The program
	contractor measures the baseline leakage rate (CFM50 _{PRE}) during the home audit.
Efficient Measure	The high-efficiency case is the home after the air-sealing measures are installed. The program contractor
	measures the post-upgrade leakage rate (CFM50 _{POST}) after the air sealing installation is complete.

¹³⁵ Heating fuel distribution is used to allocate savings to different fuels because the vast majority of the HESP Custom Path projects are expected to be weatherization measures, which predominantly impact the home's heating energy consumption.

Air Sealing	Air Sealing											
PARAMETER VALUES (DEEMED)												
Measure	ΔCFM50	$\Delta \text{MMBtu}_{\text{AS}}$	ESR _{COOL}		6COOL	LSF _{SP}		%	%FUEL Lif		rs)	Cost (\$)
Air Sealing	514 ¹³⁶	8.28 ¹³⁷	18% ¹	38 ().79 ¹³⁹	0.00222 ¹⁴⁰		Table D-1		15 ¹⁴¹		818 ¹⁴²
IMPACT FACTORS												
Measure	ISR	RR _E	RR _E		CFs	CFw			Ff	R		SO
Air Sealing	$100\%^{143}$	$100\%^{144}$	10	$100\%^{144}$		100% ¹⁴⁵		145	0% ¹⁴⁶		0% ¹⁴⁶	

- ¹³⁸ Cadmus, New Hampshire HVAC Load and Savings Research, March 2013; Table 16.
- ¹³⁹ Central Maine Power, percentage of homes with room air conditioners in 2010:

http://www.pressherald.com/2014/05/26/put_power_rates_on_ice__that_s_a_cool_idea /

¹³⁶ Average participant improvement, Opinion Dynamics, Evaluation of the Efficiency Maine Trust PACE, PowerSaver, and RDI Programs – Final Evaluation Report, Volume II: Residential Direct Install Program, October 2013

¹³⁷ Opinion Dynamics, Evaluation of the Efficiency Maine Trust PACE, PowerSaver, and RDI Programs – Final Evaluation Report, Volume II: Residential Direct Install Program, October 2013; Table 4-1.

¹⁴⁰ MA TRM 2013, average kW factor for air sealing and insulation measures (Gas, Oil, Other FF). Conversion factor of kW/kWh is combined with peak coincidence factor of 1.0 to calculate summer peak demand reduction. It is assumed there are no winter peak demand savings due to the small distribution of electrically heated homes.

¹⁴¹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

¹⁴² Average cost of participant air sealing. Represents installations where air sealing was the sole upgrade installed. Number of participants included in the average cost may very compared to the number of participants included in the average participant improvement.

¹⁴³ ISR is 100% because deemed savings results are based on evaluated results that include installation verification.

¹⁴⁴ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁴⁵ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

¹⁴⁶ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Attic/Roof Insulation	
Last Revised Date	7/1/2014 (new in PY2015)
MEASURE OVERVIEW	
Description	This measure involves the insulation of attic floor to decrease heating and cooling losses. The participant must also complete a comprehensive air-sealing project. The total savings below reflect savings due to the added attic/roof insulation and improved air sealing. Note that air sealing bonus should only be applied once per building independent of the number of insulation measures installed.
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Kerosene
Sector	Residential
Program(s)	Home Energy Savings Program
End-Use	Heating, Cooling
Decision Type	Retrofit
	SAVINGS (UNIT SAVINGS)
Demand savings	Attic/Roof Insulation + Air Sealing = Total Savings
	$\Delta kW_{SP} = 0.048 + 0.766 = 0.814$
	$\Delta kW_{WP} = 0.000$
Annual energy savings	$\Delta kWh = 16 + 40 + 21 = 77$
	$\Delta MMBtu_{GAS} = 0.8 + 1.5 = 2.3$
	$\Delta MMBtu_{OIL} = 6.0 + 11.3 = 17.3$
	$\Delta MMBtu_{WOOD} = 0.7 + 2.0 = 2.7$
	$\Delta MMBtu_{PROP} = 0.6 + 1.0 = 1.6$
	$\Delta MMBtu_{KERO} = 0.6 + 1.0 = 1.6$
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)
Demand savings	$\Delta kW = \Delta kWh_{COOL} \times LSF_{SP}$
Annual Energy savings	Δ MMBtu _{FUEL} = {SQFT x ESFH + SAS} x %FUEL
	$\Delta kWh = \{\Delta kWh_{HEAT} + SAS \times 1,000 / 3.412\} \times \%FUEL + \Delta kWh_{COOL}$
	$\Delta kWh_{HEAT} = \Delta kWh / sqft_{HEAT} \times SQFT$
	$\Delta kWh_{COOL} = \Delta kWh / sqft_{COOL} \times SQFT \times %COOL$
Definitions	Unit = Attic/roof insulation project
	SQFT = Area of attic insulation (ft^2)
	$RVAL_{PRE}$ = Pre-upgrade attic R-value (ft ² -°F-hr/Btu)
	$RVAL_{POST}$ = Post-upgrade attic R-value ($ft^2-{}^{\circ}F-hr/Btu$)
	ESFH = Heating energy savings factor from attic/roof insulation (MMBtu/SQFT)
	SAS = Savings from improved air sealing (MMBtu)
	%FUEL = Home heating fuel distribution excluding coal and other ¹⁴⁷
	$\Delta kWh/sqft_{HEAT}$ = kWh heating savings per square foot of attic space (kWh/yr/sqft)
	$\Delta kWh/sqft_{COOL}$ = kWh cooling savings per square foot of attic space (kWh/yr/sqft)
	LSF _{SP} = Summer peak load shape factor (kW/kWh/yr)
	%COOL = Percentage of homes with electric cooling equipment (%)
	SAS = Savings from Air Sealing
EFFICIENCY ASSUMPTION	NS
Baseline Efficiency	The baseline is the existing (pre-upgrade) insulation, represented by the R-value measured during the audit
Efficient Measure	The high-efficiency case is the upgraded insulation, represented by the R-value measured after the upgrade.

¹⁴⁷ Heating fuel distribution is used to allocate savings to different fuels because the vast majority of the HESP Custom Path projects are expected to be weatherization measures, which predominantly impact the home's heating energy consumption.

Attic/Roof Insulation	า												
PARAMETER VALUES (DEEMED)													
Measure		RVALPRE	RVAL _{POST} ES		FH	LSF	LSF_{SP} $\Delta kWh/$		/sqft _{HEAT}	SA	S	%	FUEL
Attic/Roof Insulation	1,000 ¹⁴⁸	12 ¹⁴⁸	49 ¹⁴⁸	$0.009^{149} 0.00222^{150} 2.010^{149} 17^{151}$		151	Table D-1						
Measure	∆kWh/sq	ft _{COOL}	_{oL} ∆kW/sqt		//sqft %COC				Life (yrs)		Cost (\$)		(\$)
Attic/Roof Insulation	0.027	,149	0.0000)84 ¹⁴⁹	0.79 0.79		2		25 ¹⁵³		3,300 ¹⁵⁴		0 ¹⁵⁴
IMPACT FACTORS													
Measure	ISR	F	RR _E	F	RR _D		CFs		CFv	v FF			SO
Attic/Roof Insulation	100% ¹⁵⁵	100)% ¹⁵⁶	100% ¹⁵⁶		100% ¹⁵⁷		,157 0	100% ¹⁵⁷		0% ¹	58	0% ¹⁵⁸

¹⁵¹ Based on RHA data for HESP1 project in 2010 and 2011. Average CFM50 reduction across all insulation types was 1712 CFM50. From this 517 CFM50 was subtracted to account for the air sealing reduction based on RDI evaluation. MMBtu savings estimated at 0.014 MMBtu/CFM50 based on RDI evaluation.

¹⁵² Central Maine Power, percentage of homes with room air conditioners in 2010:

¹⁵⁵ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

¹⁴⁸ Average value, based on program implementer feedback

¹⁴⁹ NY TRM 2010, average roof insulation savings (R11 to R49) for the New York cities of Binghamton and Massena. The savings for these cities were mapped to the Maine cities of Portland, Bangor (Binghamton) and Caribou (Massena). Savings were scaled by degree days for each city. Final savings value represents an average weighted by city population.

¹⁵⁰ MA TRM 2013, average kW factor for air sealing and insulation measures (Gas, Oil, Other FF). Conversion factor of kW/kWh is combined with peak coincidence factor of 1.0 to calculate summer peak demand reduction. It is assumed there are no winter peak demand savings due to the small distribution of electrically heated homes.

http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea / ¹⁵³ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

¹⁵⁴ Average cost of participant attic insulation. Represents installations where attic insulation was the sole upgrade installed. Number of participants included in the average cost may vary compared to the number of participants included in the average participant improvement.

¹⁵⁶ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁵⁷ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

¹⁵⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Wall Insulation						
Last Revised Date	7/1/2014 (new in PY2015)					
MEASURE OVERVIEW						
Description	This measure involves the insulation of walls to decrease heating and cooling losses. The participant must also complete a comprehensive air-sealing project. The total savings below reflect savings due to the added attic/roof insulation and improved air sealing. Note that air sealing bonus should only be applied once per building independent of the number of insulation measures installed.					
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Kerosene					
Sector	Residential					
Program(s)	Home Energy Savings Program					
End-Use	Heating, Cooling					
Decision Type	Retrofit					
DEEMED GROSS ENERGY	SAVINGS (UNIT SAVINGS)					
Demand savings	Wall Insulation + Air Sealing = Total Savings					
	$\Delta kW_{SP} = 0.027 + 0.766 = 0.793$					
	$\Delta kW_{WP} = 0.000$					
Annual energy savings	Wall Insulation + Air Sealing = Total Savings					
	$\Delta kWh = 23 + 40 = 63$					
	Δ MMBtu _{GAS} = 0.5 + 1.5 = 2.0					
	$\Delta MMBtu_{OIL} = 3.9 + 11.3 = 15.2$					
	Δ MMBtu _{wood} = 0.5 + 2.0 = 2.5					
	$\Delta MMBtu_{PROP} = 0.4 + 1.0 = 1.4$					
	$\Delta MMBtu_{KERO} = 0.4 + 1.0 = 1.4$					
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)					
Demand savings	$\Delta kW = \Delta kWh_{COOL} \times LSF_{SP}$					
Annual Energy savings	Δ MMBtu _{FUEL} = {SQFT x ESFH + SAS} x %FUEL					
	$\Delta kWh = {\Delta kWh_{HEAT} + \Delta kWh_{COOL} + SAS x 1,000 / 3.412} x %FUEL$					
	$\Delta kWh_{HEAT} = \Delta kWh / sqft_{HEAT} x SQFT$					
	$\Delta kWh_{COOL} = \Delta kWh / sqft_{COOL} x SQFT x %COOL$					
Definitions	Unit = Wall insulation project					
	SQFT = Area of wall insulation (ft^2)					
	$RVAL_{PRE}$ = Pre-upgrade wall R-value (ft ² -°F-hr/Btu)					
	$RVAL_{POST} = Post-upgrade wall R-value (ft2-°F-hr/Btu)$					
	ESFH = Heating energy savings factor from wall insulation (MMBtu/SQFT)					
	SAS = Savings from improved air sealing (MMBtu)					
	%FUEL = Home heating fuel distribution excluding coal and other ¹⁵⁹					
	$\Delta kWh/sqft_{HEAT}$ = kWh heating savings per square foot of wall space					
	$\Delta kWh/sqft_{COOL}$ = kWh cooling savings per square foot of wall space					
	LSF _{sp} = Summer peak load shape factor (kW/kWh/yr)					
	%COOL = Percentage of homes with electric cooling equipment (%)					
EFFICIENCY ASSUMPTION						
Baseline Efficiency	Walls with existing R-value before upgrade, as documented in project application form					
Efficient Measure	Walls with post-upgrade R-value, as documented in project application form					

¹⁵⁹ Heating fuel distribution is used to allocate savings to different fuels because the vast majority of the HESP Custom Path projects are expected to be weatherization measures, which predominantly impact the home's heating energy consumption.

Wall Insulation												
PARAMETER VALUES												
Measure	SQFT	RVAL	RVAL _{PRE}		RVAL _{POST} ES		SFH LSF		_{SP} ΔkWh		/sqft _{HEAT}	
Wall Insulation	1,000 ¹⁶⁰	4 ¹⁶⁰	4 ¹⁶⁰		5160	0.0	06 ¹⁶¹	0.002	0.00222 ¹⁶²		1.287 ¹⁶¹	
Measure	Δ kWh/sqft _{COOL}	Δ kW/sqft	∆kW/sqft %COOL		SAS	5	%FUEL		Life (yrs)		Cost (\$)	
Wall Insulation	0.016 ¹⁶¹	0.000036 ¹⁶¹	.000036 ¹⁶¹ 0.79 ¹⁶³		17 ¹⁵	Table I		D-1	25 ¹⁶⁴		3,400 ¹⁶⁵	
IMPACT FACTORS												
Measure	ISR	RR _E	RR _D		CFs			CFw		R	SO	
Wall Insulation	$100\%^{166}$	$100\%^{167}$	100%	167	100	$\%^{168}$	10)0% ¹⁶⁸	0%	169	0% ¹⁶⁹	

¹⁶³ Central Maine Power, percentage of homes with room air conditioners in 2010:

¹⁶⁶ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

 $^{^{\}rm 160}$ Average value, based on program implementer feedback

¹⁶¹ NY TRM 2010, average wall insulation savings (R0 to R11) for the New York cities of Binghamton and Massena. The savings for these cities were mapped to the Maine cities of Portland, Bangor (Binghamton) and Caribou (Massena). Savings were scaled by degree days for each city. Final savings value represents an average weighted by city population.

¹⁶² MA TRM 2013, average kW factor for air sealing and insulation measures (Gas, Oil, Other FF). Conversion factor of kW/kWh is combined with peak coincidence factor of 1.0 to calculate summer peak demand reduction. Zero winter peak demand savings due to the small distribution of electrically heated homes.

http://www.pressherald.com/2014/05/26/put_power_rates_on_ice__that_s_a_cool_idea / ¹⁶⁴ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

¹⁶⁵ Average cost of participant wall insulation. Represents installations where wall insulation was the sole upgrade installed. Number of participants included in the average cost may very compared to the number of participants included in the average participant improvement.

¹⁶⁷ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁶⁸ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

¹⁶⁹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Basement Insulation	n									
Last Revised Date	7/1/2014 (ne	w in PY2015)								
MEASURE OVERVIEW										
Description	This measure and cooling lo savings below sealing bonus installed.	osses. The pa / reflect savir	rticipant mus ngs due to the	t also e adde	complete a d attic/roc	a compi of insula	rehensive air tion and imp	-sealin roved	g project. The air sealing. No	total ote that air
Energy Impacts	Electric, Natu	ral Gas, Oil, I	Propane, Woo	od, Kei	rosene					
Sector	Residential									
Program(s)	Home Energy	Savings Prog	gram							
End-Use	Heating, Cool	ing								
Decision Type	Retrofit									
DEEMED GROSS ENERG	Y SAVINGS (UN	IT SAVINGS)							
Demand savings	Basement Ins	ulation + Air	Sealing = Tota	al Savi	ings					
	$\Delta kW_{SP} = 0 + 0$	0.766 = 0.766	5							
	$\Delta kW_{WP} = 0.00$	00								
Annual energy savings	Basement Ins	ulation + Air	Sealing = Tota	al Savi	ings					
	$\Delta kWh = 9 + 4$	0 = 49								
	$\Delta MMBtu_{GAS} = 0.3 + 1.5 = 1.8$									
	$\Delta MMBtu_{OIL} = 2.5 + 11.3 = 13.8$									
	$\Delta MMBtu_{WOOD} = 0.3 + 2.0 = 2.3$									
	$\Delta MMBtu_{PROP} = 0.2 + 1.0 = 1.2$									
	$\Delta MMBtu_{KERO}$	= 0.2 + 1.0 =	1.2							
GROSS ENERGY SAVING	S ALGORITHM	S (UNIT SAV	INGS)							
Demand savings	$\Delta kW = NA$									
Annual Energy savings	Δ MMBtu _{FUEL} =	= {ΔMMBtu _B	+ SAS} x %FU	EL						
	$\Delta kWh = {\Delta M}$	MBtu _B + SAS	} x 1,000 / 3.4	12 x %	%FUEL					
Definitions	Unit =	= Basement/	floor insulatio	on proj	ject					
	Δ MMBtu _B = Average residential heating energy savings from basement insulation measure (MMBtu)									
	SAS = Savings from improved air sealing (MMBtu)									
	%FUEL = Home heating fuel distribution excluding coal and other ¹⁷⁰									
	SQFT = Area of basement insulation in (ft^2)									
	$RVAL_{PRE}$ = Pre-upgrade basement R-value (ft ² -°F-hr/Btu)									
	1051		de basement		ue (ft ² -°F-h	r/Btu)				
	3.412 = Conversion: 3.412 kBtu/kWh									
		= Conversion	: 1,000 kBtu/l	MMBt	u					
EFFICIENCY ASSUMPTIC										
Baseline Efficiency	Basement wa									
Efficient Measure	Basement wa	lls with post-	-upgrade R-va	lue, a	s measure	d during	g insulation u	pgrad	e	
PARAMETER VALUES (D	,								1	
Measure	SQFT	RVAL _{PRE}	RVAL _{POST}	ΔN	1MBtu _B	SA	54		Life (yrs)	Cost (\$)
Basement Insulation	560 ¹⁷¹	1 ¹⁷¹	10 ¹⁷¹	3	.63 ¹⁷²	17 ¹¹	⁵¹ Table	D-1	25 ¹⁷³	3,100 ¹⁷⁴
IMPACT FACTORS		1								
Measure	ISR	RRE	RR _D 100% ¹	70	CFs		CFw		FR 0% ¹⁷⁸	SO 0% ¹⁷⁸
Basement Insulation	$100\%^{175}$	100% ¹⁷⁶	1000/1	/6	100%	1/7	100% ¹⁷⁷		.178	170

¹⁷⁰ Heating fuel distribution is used to allocate savings to different fuels because the vast majority of the HESP Custom Path projects are expected to be weatherization measures, which predominantly impact the home's heating energy consumption. ¹⁷¹ Average value, based on program implementer feedback

¹⁷² Opinion Dynamics, Evaluation of the Efficiency Maine Trust PACE, PowerSaver, and RDI Programs – Final Evaluation Report, Volume II: Residential Direct Install

Program, October 2013; Table 4-1. ¹⁷³ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

¹⁷⁴ Average cost of participant basement insulation. Represents installations where basement insulation was the sole upgrade installed. Number of participants included in the average cost may very compared to the number of participants included in the average participant improvement.

Ductless Heat Pump								
Last Revised [ate 7/1/2014							
MEASURE OVERVIEW								
Descrip	This measure involves the purchase and installation of a high efficiency ductless heat pump system, instead of a standard efficiency ductless heat pump system, as a supplemental heating system.							
Energy Imp								
	tor Residential							
Prograi								
End								
Decision T	/pe New Construction, Replace on Burnout							
DEEMED GROSS ENERG	SAVINGS (UNIT SAVINGS)							
Demand sav	ngs $\Delta kW_c = 0.140$							
	$\Delta kW_{H} = 0.411$							
Annual energy sav	ngs $\Delta kWh/yr = 1,517$							
	$\Delta kWh_{H}/yr = 1,504$							
	$\Delta kWh_c/yr = 13$							
GROSS ENERGY SAVING	ALGORITHMS (UNIT SAVINGS)							
Demand Savings	Heating Savings:							
Annual Energy Savings	Cooling Savings: $\Delta k W_c = CAP_{Cool} \times \left(\frac{1}{EER_B} - \frac{1}{EER_E}\right)$ $\Delta k Wh/yr = \% Portland \times [\Delta k Wh_{HEAT}/yr + \Delta k Wh_{COOL}/yr]_{Portland}$ + %Bangor × [$\Delta k Wh_{HEAT}/yr + \Delta k Wh_{COOL}/yr]_{Bangor}$ + %Caribou × [$\Delta k Wh_{HEAT}/yr + \Delta k Wh_{COOL}/yr]_{Caribou}$ Energy Savings ¹⁷⁹ and Population Weights ¹⁸⁰ for Three Cities in Maine $\Delta k Wh_{HEAT}/yr_{Portland} = 1,474$ $\Delta k Wh_{COOL}/yr_{Portland} = 14$ $\Delta k Wh_{HEAT}/yr_{Bangor} = 1,532$ $\Delta k Wh_{COOL}/yr_{Bangor} = 11$ $\Delta k Wh_{HEAT}/yr_{Caribou} = 1,773$ $\Delta k Wh_{COOL}/yr_{Caribou} = 6$ $\Delta k Wh_{HEAT}/yr_{Caribou} = 1,773$ $\Delta k Wh_{COOL}/yr_{Caribou} = 6$ $M Caribou = 5\%$ Heating Savings: Heating savings were calculated based on a model employing the following key assumptions: $D HP$ is sized to be able to meet 100% of the home's heating load with 100% of its available heating capacity when the outside air temperature is equal to 35°F. (i.e. heat pump balance $A = 0.50\%$							
	 point of 35°F) DHP's contribution to heating does not exceed 50% of the home's heating load in any temperature bin. Even in temperature bins in which 100% of the home's heating load can be supplied by the DHP, the DHP supplies 50% of the heating load, and the remaining 50% is supplied by the existing heating system.¹⁸¹ DHP heating output capacity and DHP heating efficiency (both baseline and efficient units) vary linearly with outside air temperature. Heating is called for when outside air temperature is less than or equal to 65°F. 							

 $^{^{175}}$ EMT assumes that all purchased units are installed (i.e. $\rm ISR$ = 100%).

¹⁷⁶ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁷⁷ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

¹⁷⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

¹⁷⁹ Based on Excel Workbook for Ductless Heat Pump Retrofit: See

¹⁸⁰ Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract

¹⁸¹ 50% of load assumption accounts for reduced usage of DHP based on homeowners' lack of experience/confidence with a DHP. This value will be reevaluated for PY 2016 based on results of the on-going Bangor Hydro Evaluation. The validity of the resulting load displacement of 46% (% of the home's heating load) has been verified by benchmarking against findings from: Ductless Heat Pump Impact & Process Evaluation, 2013, Ecotope, <u>http://www.ecotope.com/wp/wp-content/uploads/2014/04/2013_006_DHPImpactBilling.pdf</u>.

Ductless Heat Pump									
	The total percenta and 40%, respectiv weather bin, are s	vely. The co	rresponding bas	eline and eff	ficient DHP	-			
	<u>Cooling Savings</u> ¹⁸² [ΔkWhcool/yr]city =	$\frac{\text{Oling Savings}^{182}}{\text{kWh}_{\text{COOL}}/\text{yr}]_{\text{City}}} = CAP_{Cool} \times \left(\frac{1}{EER_B} - \frac{1}{EER_E}\right) \times EFLH_{Cool,City}$							
Definitions	$\begin{array}{c} = \\ Unit \\ = \\ Output_{i,Base} \\ = \\ Output_{i,EE} \\ = \\ HSPF_{i,Base} \\ HSPF_{i,EE} \\ = \\ CAP_{Cool} \\ = \\ EFLH_{Cool,City} \\ = \\ EER_{B} \\ = \\ FER_{c} \end{array}$	Jnit= 1 ductless heat pump (DHP) systemOutputi,Base= Output heating rate of the baseline DHP in weather bin i (kBtu/h)Outputi,EE= Output heating rate of the high-efficiency DHP in weather bin i (kBtu/h)ISPFi,Base= Heating seasonal performance factor of the baseline DHP in weather bin iISPFi,EE= Heating seasonal performance factor of the high-efficiency DHP in weather bin i(Btu/Watt-hr)= Heating seasonal performance factor of the high-efficiency DHP in weather bin i(Btu/Watt-hr)= Rated cooling capacity of the DHP (kBtu/h)ERB= Rated cooling hours for each of the three cities in Maine(hrs/yr)= Peak energy efficiency ratio for baseline DHP (Btu/Watt-br)							
EFFICIENCY ASSUMPTIO									
Baseline Efficie	heat pump th	The baseline case assumes the home retains its existing heating system and adds a new ductless heat pump that meets Federal minimum efficiency requirement for units manufactured on or after January 1, 2015: HSPF=8.2 and SEER=14.0.							
Efficient Measure The high-efficiency case assumes the home retains its existing heating system and high efficiency ductless heat pump that meets minimum efficiency requirements f rebate: HSPF=12.0 and SEER=18.0.									
PARAMETER VALUES (DI									
Meas	ure CAP _{Hea}	t	CAP _{Cool}	HSPF _B	HSPF _E	EER _B	3	EER _E	
Ductless Heat Pu	imp CAP _{Hea}	3	14.8 ¹⁸³	Table E-1		11.1 ¹⁸⁴		12.3 ¹⁸⁴	
Meas	Measure EFLH _{Cool} ,					Life (yrs)		Cost (\$)	
Ductless Heat Pu	102 (Portland)Ductless Heat Pump81 (Bangor)42 (Caribou)					18 ¹⁸⁶	5	\$682 ¹⁸⁷	
IMPACT FACTORS		I					I		
Meas		RR _E	RR _D	CFs	0	CF _W 7% ¹⁹¹	FR	SO	
Ductless Heat Pu	100% ¹⁸⁸	100% ¹⁸⁹	100% ¹⁸⁹	10.7% ¹⁹	⁰ 79.7	7%¹⁹¹	0% ¹⁹²	0% ¹⁹²	

¹⁸⁵ RLW Analytics, Coincidence Factor Study Residential Room Air Conditioners, June 2008; Table i-2. Values are based on TMY2 weather for Portland and Caribou Maine. We determined the value for Bangor by comparing the EFLH values from the study to the typical cooling degree days (CDD) in each region.

¹⁸⁷ The incremental cost is the difference in cost between a typical high-efficiency unit (\$1,645 based on Fujitsu model 12RLS2, ecomfort.com) and a typical baseline unit (\$963 based on LG model LS093HE, ecomfort.com).

¹⁸² Weather bin analysis is not used for cooling savings because EFLH and on-peak CF results were available from an evaluation of residential air-conditioners.

¹⁸³ Average heating and cooling capacity of 439 units included in Bangor Hydro DHP pilot program (based on program data dated 6/8/2013). Future TRM updates will incorporate data on capacity of units in Efficiency Maine program.

¹⁸⁴ Baseline and high-efficiency EER values are based on the expected minimum SEER values of 14.0 (baseline) and 18.0 (efficient), respectively. The rated SEER values are converted to average EER values based on a correlation between rated SEER and EER for the DHP models included in the Bangor Hydro DHP pilot program.

¹⁸⁶ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

¹⁸⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

¹⁸⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁹⁰ The on-peak summer kW savings is calculated directly using the 11.1% coincidence factor used for residential room air-conditioners. The summer coincidence factor is the ratio of the calculated summer on-peak kW savings and the gross kW savings value.

¹⁹¹ The on-peak winter kW savings is calculated directly using the bin analysis. The winter coincidence factor is the ratio of the calculated winter on-peak kW savings (calculated in the bin analysis) and the gross kW savings value.

¹⁹² This measure has not yet been included in a program evaluation. Due to the low saturation of ductless heat pumps and the high first-costs of this equipment, EMT assumes 0% free-ridership and 0% spillover, until the next program impact evaluation.

High-Efficiency Furnaces a	nd Boilers										
Last Revised Date	7/1/2014 (new ii	n PY2015)									
MEASURE OVERVIEW		,									
Description	This measure inv	his measure involves the installation of a high-efficiency furnace or boiler instead of a code-									
	compliant furnad	ce or boiler	of the same	fuel type and	l capacity (i.e., n	o fuel switching	g).				
Energy Impacts	Natural Gas, Hea	iting Oil, Ke	rosene, Prop	ane, Wood, I	Pellet						
Sector	Residential										
Program(s)	Home Energy Sa	ome Energy Savings Program									
End-Use	Heating										
Decision Type	New Constructio	n, Replace	on Burnout								
DEEMED GROSS ENERGY SAVIN	IGS (UNIT SAVING	iS)									
Demand Savings	$\Delta kW = 0.000$										
Annual Energy Savings	Furnace Savings	<u>Boil</u>	er Savings								
	$\Delta kWh/yr = 0$	Δ kV	Vh/yr = 0								
	Δ MMBtu _{GAS} = 1.0	5 ΔM	MBtu _{GAS} = 1.	2							
	Δ MMBtu _{OIL} = 11.	.6 ΔM	MBtu _{oil} = 8.6	5							
	$\Delta MMBtu_{KERO} = 1$.1 ΔM	MBtu _{KERO} = 0	.8							
	$\Delta MMBtu_{PROP} = 1$.1 ΔM	$MBtu_{PROP} = 0$.8							
	Δ MMBtu _{WOOD} = 2		MBtu _{wood} =	1.1							
	$MMBtu_{PELLET} = 0.$		MBtu _{PELLET} =	0.5							
GROSS ENERGY SAVINGS ALGO		VINGS)									
Demand Savings	$\Delta kW = 0.0000$										
Annual Energy Savings	ΔMMBtu _{FUEL} /yr					L					
Definitions		• •		equipment (k							
	-		-	-	e installed high-e		nrs/yr)				
			•		mpliant unit (AF	UE)					
				n-efficiency u	nit (AFUE)						
			000 kBtu per		uding cool and	othor					
	MFUEL = HC	ine neatin	g luel distri	bution excit	uding coal and	other					
EFFICIENCY ASSUMPTIONS	The baseline cas	o ic o now h	oilor or furn	aca that mag	ts the federal m	inimum officior					
Baseline Efficiency		The baseline case is a new boiler or furnace that meets the federal minimum efficiency									
	requirements. Assuming an efficiency of 84% AFUE for a new boiler and 83% AFUE for a new furnace.										
Efficient Measure	The high-efficiency equipment exceeds the federal minimum efficiency.										
PARAMETER VALUES (DEEMED		icy cquipine				. y.					
Measure	CAP _{INPUT} ¹⁹³	EFLH _H ¹⁹⁴	EF _{BASE} ¹⁹⁵	EF_{EE}^{196}	%FUEL	Life (yrs) ¹⁹⁷	Cost (\$) ¹⁹⁸				
High Efficiency Furnace	80	1,510	83%	95%	Table D-1	25	5,900				
High Efficiency Boiler	80	1,510	84%	93%	Table D-1	25	6,800				
IMPACT FACTORS		,		/ -		-	-,				
Measure	ISR 100% ¹⁹⁹	RR _E 100% ²⁰⁰	RR _D 100% ²⁰⁰	CFs	CFw	FR 0% ²⁰¹	SO 0% ²⁰¹				

¹⁹³ Based on the assumed 40 Btuh/sqft furnace sizing ratio and a home size of 2,000 sqft.

¹⁹⁴ Based on the NY 2010 TRM single family detached heating EFLH and adjusted to Maine using a HDD65 adjustment based on NOAA 1970-2000 Normals. The Maine reference cities used are Portland, Bangor and Caribou and the EFLH were weighted together using census population data.

 ¹⁹⁵ Table D-2. Minimum Efficiency Requirements for Furnaces and Boilers- based on Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10
 ¹⁹⁶ Average AFUE for new high-efficiency equipment are based on EMT program tracking data.
</u>

¹⁹⁷ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1, value for new construction.

¹⁹⁸ Incremental costs based on the HESP FY14 Program for efficient boilers and furnaces and the baseline costs are based on the DEER 2008 cost workbook for residential sized furnaces and boilers

http://www.deeresources.com/files/deer0911planning/downloads/DEER2008_Costs_ValuesAndDocumentation_080530Rev1.zip

¹⁹⁹ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²⁰⁰ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁰¹ EMT assumes 100% NTG (0% free-ridership) for the low income sector.

Pellet/Wood Stove								
Last Revised Date	7/1/2014 (new i	n PY2015)						
MEASURE OVERVIEW	•							
Description	This measure in	volves purchas	se and installation	on of an eligible	e pellet/wood sto	ove to provide su	pplemental	
	heat for the exis	at for the existing heating system. Energy savings are achieved due to the reduction in distribution						
	losses when hea	at is provided b	by the pellet/wo	od stove.				
Energy Impacts	Wood							
Sector	Residential							
Program(s)	Home Energy Sa	ivings Program	l					
End-Use	Heating							
Decision Type	New Construction	on, Replace on	Burnout					
DEEMED GROSS ENERG	Y SAVINGS (UNIT	SAVINGS)						
Demand savings	$\Delta kW_{SP} = NA$							
	$\Delta kW_{WP} = NA$							
Annual energy savings	Δ MMBtu _{wood} =	11.6						
GROSS ENERGY SAVING	S ALGORITHMS (I	UNIT SAVINGS	5)					
Demand savings	$\Delta kW = NA$							
Annual Energy savings	Δ MMBtu = MM	Btu _{HEAT} x %STC	DVE x (1/EFF _{BASE}	– 1/EFF _{EE})				
Definitions	Unit	= New pellet/	wood stove					
	MMBtu _{HEAT}	= Average hea	ating energy cor	nsumption for I	Maine household	(MMBtu)		
	%STOVE	= Percentage	of heat load ser	rved by new pe	llet/wood stove ((%)		
	EFF _{BASE}	= Baseline hea	ating equipmen	t efficiency (%)				
	EFF _{EE}	= Pellet/wood	d stove heating	efficiency (%)				
EFFICIENCY ASSUMPTIO	NS							
Baseline Efficiency	The baseline cas	se is a non EPA	certified pellet	/wood stove to	provide supplen	nental heat.		
Efficient Measure	The high-efficier	ncy case assum	nes the home re	etains its existin	ig heating system	n and adds a new	pellet/wood	
	stove to provide	e supplementa	l heat.					
PARAMETER VALUES								
Measure	MMBtu _{HEAT}	%STOVE	EFF _{BASE}	EFF _{EE}		Life (yrs)	Cost (\$)	
Pellet/Wood Stove	97.4 ²⁰²	50% ²⁰³	60% ²⁰⁴	70% ²⁰⁵		25 ²⁰⁶	3,000 ²⁰⁷	
IMPACT FACTORS								
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO	
Pellet/Wood Stove	$100\%^{208}$	100% ²⁰⁹	100% ²⁰⁹	100% ²¹⁰	100% ²¹⁰	0% ²¹¹	0% ²¹¹	

²⁰² Weighted average value based on estimated heating energy and population distribution for Portland (96, 71%), Bangor (96, 23%), and Caribou (122, 5%). ²⁰³ Estimate, comparison against RECS microdata for the New England census division found percentages in a similar range, though these data were not directly comparable. Primary data collection is the best method for refining this input.

²⁰⁴ Engineering judgement

²⁰⁵ U.S. DoE, conservative estimate of pellet stove efficiency: http://energy.gov/energysaver/articles/wood-and-pellet-heating

²⁰⁶ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction.

²⁰⁷ Average full cost of participant pellet/wood stove installation minus \$700 for standard efficiency stove. Represents installations where the stove was the sole upgrade installed. ²⁰⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²⁰⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²¹⁰ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

²¹¹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 0% free-ridership and 0% spillover.

Pellet Boiler											
Last Revised Date	7/1/2014 (new	in PY2015)									
MEASURE OVERVIEW											
Description	This measure in	nvolves purcha	se and installation	on of a pellet be	oiler as a whole-l	nome heating sy	stem rather				
	than a new fos	sil fuel boiler. I	EMT estimates n	o energy savin	gs for this measu	ire, but the parti	icipating				
	customer achie	stomer achieves overall GHG and fuel cost reductions due to the change in fuel type.									
Energy Impacts	Wood, Oil										
Sector	Residential										
Program(s)	Home Energy S	avings Program	า								
End-Use	Heating	<u> </u>									
Decision Type	New Construct	ion, Replaceme	ent								
DEEMED GROSS ENERGY											
Demand savings	$\Delta kW_{SP} = NA$										
	$\Delta kW_{WP} = NA$										
Annual energy savings											
	$\Delta MMBtu_{PELLET} =$	$\Delta MMBtu_{PELLET} = -115$									
GROSS ENERGY SAVING			5)								
Demand savings	$\Delta kW = NA$	N									
Annual Energy savings	Δ MMBtu _{BASEFUE}	_/yr = MMBtu⊦	HEAT X 1 / EFFBASE								
	Δ MMBtu _{NEWFUE}	$_{\rm L}/{\rm yr} = - ({\rm MMB})$	tu _{HEAT} x 1 / EFF _{PE}	.)							
Definitions	Unit = New pellet boiler										
	MMBtu _{HEAT}	= Average I	neating load for	Maine home (N	/MBtu)						
	EF _{BASE}	= Average I	paseline heating	system efficier	ncy (%)						
	EF _{PB}	= Average	oellet boiler hea	ting system eff	iciency (%)						
EFFICIENCY ASSUMPTIO	NS										
Baseline Efficiency	The baseline ca	ise is a new sta	ndard efficiency	fossil fuel boile	er.						
Efficient Measure	The high-efficie	ency case assur	nes the home re	places its heati	ing system with a	a new pellet boil	er that meets				
	the minimum e	efficiency requi	rements for prog	gram rebate.							
PARAMETER VALUES (D	EEMED)										
Measure	MMBtu _{HEAT}	EFF _{BASE} 84% ²¹³	EFF _{PB}			Life (yrs)	Cost (\$)				
Pellet Boiler	97.4 ²¹²	84% ²¹³	85% ²¹⁴			25 ²¹⁵	12,942 ²¹⁶				
IMPACT FACTORS											
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO				
	$100\%^{217}$	100% 218	NA	NA	NA	0% ²¹⁹	0% ²¹⁹				

²¹² Weighted average value based on estimated heating energy and population distribution for Portland (96, 71%), Bangor (96, 23%), and Caribou (122, 5%). ²¹³ Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-</u>

idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10 ²¹⁴ Average efficiency of residential pellet boiler, based on the following models: Pellergy KPS-100-5, Woodpecker Wood-Pellet Boiler, Froling P4

²¹⁵ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction.

²¹⁶ Average incremental cost of participant pellet boiler. Represents installations where pellet boiler was the sole upgrade installed. Baseline cost reflects cost of a new, code-compliant, 80 kBtuh boiler. Baseline cost based on DEER 2008 cost workbook.

²¹⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²¹⁸ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²¹⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Central Air Source H							
Last Revised Date	7/1/2014 (new in PY2015)						
MEASURE OVERVIEW							
Description	This measure involves the purchase and installation of new high-efficiency air source heat pump for						
	central heating and cooling rather than a new standard-efficiency air source heat pump. Energy savings						
	are achieved by the improved efficiency of the installed equipment compared to federal standards.						
Energy Impacts	Electric						
Sector	Residential						
Program(s)							
End-Use	Heating, Cooling						
Decision Type							
DEEMED GROSS ENERGY	(SAVINGS (UNIT SAVINGS)						
Demand savings	ΔkW_{SP} = 0.054 (0.013 after 1/1/17, based on updated EER baseline of 11.8)						
	ΔkW_{WP} = 0.538 (0.395 after 1/1/17, based on updated HSPF baseline of 8.2)						
Annual energy savings	Δ kWh/yr = 3,087 (2,270 after 1/1/17, based on updated SEER and HSPF baselines of 14 and 8.2						
	respectively)						
GROSS ENERGY SAVING	S ALGORITHMS (UNIT SAVINGS)						
Demand savings	$\Delta kW_{SP} = CAP_{C} \times (1 / EER_{BASE} - 1 / EER_{EE}) \times CF_{SP}$						
	$\Delta kW_{WP} = CAP_{H} \times (1 / HSPF_{BASE} - 1 / HSPF_{EE}) \times CF_{WP}$						
Annual Energy savings	$\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}$						
	$\Delta kWh_{COOL} = CAP_{c} \times (1 / SEER_{BASE} - 1 / SEER_{EE}) \times EFLH_{COOL}$						
	$\Delta kWh_{HEAT} = CAP_{H} \times (1 / HSPF_{BASE} - 1 / HSPF_{EE}) \times EFLH_{HEAT}$						
Definitions	Unit = New ASHP equipment						
	CAP _c = Output cooling capacity of ASHP (kBtu/hr)						
	CAP _H = Output heating capacity of ASHP (kBtu/hr)						
	SEER _{BASE} = SEER of new code-compliant ASHP (Btu/w-hr) (baseline code updates 6/30/16)						
	SEER _{EE} = SEER of new high-efficiency ASHP (Btu/w-hr)						
	HSPF _{BASE} = HSPF of new code-compliant ASHP (Btu/w-hr) (baseline code updates 6/30/16)						
	HSPF _{EE} = HSPF of new high-efficiency ASHP (Btu/w-hr)						
	EER _{BASE} = EER of new code-compliant ASHP (Btu/w-hr)						
	EER _{EE} = EER of new high-efficiency ASHP (Btu/w-hr)						
	CF _{SP} = Summer peak coincidence factor (%)						
	CF _{WP} = Winter peak coincidence factor (%)						
	EFLH _{HEAT} = Equivalent Full Load Hours of Heating (hr)						
	EFLH _{COOL} = Equivalent Full Load Hours of Cooling (hr)						
EFFICIENCY ASSUMPTIO	NS						
Baseline Efficiency	The baseline case is a new code-compliant air-source heat pump to provide heating and cooling.						
Efficient Measure	The high-efficiency case is a new high-efficiency air source heat pump with a HSPF greater than or equal to						
	12.0 Btu/W-h to provide heating and cooling.						

Central Air Source Heat Pump (ducted)										
PARAMETER VALUES										
Measure	CAP _c	CAP _H	SEER _{BASE}	SEER _{EE}	HSI	PF BASE	HSPF _{EE}			
Central ASHP	36 ²²⁰	36 ²²⁰	13 ²²¹	18 ²²²	7.	7 ²²¹	10.0 ²²³			
Measure	EER _{BASE}	EER _{EE}	EFLH _{HEAT}	EFLH _{cool}	Life	(yrs)	Cost (\$)			
Central ASHP	11.2 ²²⁴	12 ²²⁵	2,706 ²²⁶	231 ²²⁶	2	227	2,000 ²²⁸			
IMPACT FACTORS										
Measure	ISR	RR _E	RR _D	CF _{SP}	CF _{WP}	FR	SO			
Central ASHP	100% ²²⁹	100% ²³⁰	100% ²³⁰	25% ²³¹	50% ²³¹	0% ²³²	0% ²³²			

²²⁰ Assumed capacity

²²¹ U.S. DoE Standard, effective in 2006: <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75</u>. A grace period is in place for an amendment to the 2006 standard, which delays the updated code until June 30, 2016.

²²²NY TRM 2010 p. 42, ASHP measure, SEER correlated to HSPF of 9.2 (closest HSPF value to 10)

²²³ Minimum program requirement

²²⁴ Converted baseline SEER to EER using the following conversion: EER = -0.02*SEER²+1.12*SEER. U.S. DoE Building America House Simulation Protocols, p. 47, Eq 22, http://www.nrel.gov/docs/fy11osti/49246.pdf

²²⁵ ENERGY STAR database, EER correlated to HSPF of 10: most common EER associated with split ASHP systems with HSPF of 10, viewed 7/16/14

²²⁶ Calculated based on 97.4 MMBTU average heating load for Maine household and 36 kBtuh Central GSHP heating capacity. Average heating load for Maine

household is a weighted average value based on estimated heating energy and population distribution for Portland (96, 71%), Bangor (96, 23%), and Caribou (122, 5%). ²²⁷ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June

²²⁷ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction.

²²⁸ Survey of standard and high efficiency system costs at ecomfort.com.

²²⁹ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²³⁰ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²³¹ MA TRM 2013 TRM 2010, Air source heat pump peak coincidence factor

²³² The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Central Geotherma	al (Ground source) Heat Pump							
Last Revised Date	7/1/2014 (new in PY2015)							
MEASURE OVERVIEW								
Description	This measure involves the purchase and installation of new Tier 3 high-efficiency geothermal heat pump instead of a Tier 1 standard efficiency geothermal heat pump							
Energy Impacts	ectric							
Sector	Residential							
Program(s)	Home Energy Savings Program							
End-Use	Heating, Cooling							
Decision Type	New Construction, Replace on Burnout							
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)							
Demand savings	$\Delta k W_{c} = 0.516$ $\Delta k W_{H} = 0.357$							
Annual energy	$\Delta kWh/yr = 1086$							
savings	$\Delta kWh_c/yr = 119$							
	$\Delta kWh_{H}/yr = 967$							
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)							
Demand savings	$\Delta kW_{H} = CAP_{H} \times (1/COP_{BASE} - 1/COP_{EE}) \times 1/3.412$							
	$\Delta kW_{c} = CAP_{c} \times (1/EER_{BASE} - 1/EER_{EE})$							
Annual Energy	Heating Savings:							
savings	$\Delta kWh_{H}/yr = CAP_{H} \times (1/COP_{BASE} - 1/COP_{EE}) \times 1/3.412 \times EFLH_{H}$							
	Cooling Savings:							
	$\Delta kWh_c/yr CAP_c \times (1/EER_{BASE} - 1/EER_{EE})] \times EFLH_c$							
Definitions	Unit = new geothermal heat pump system							
	CAP_c = Output cooling capacity of geothermal heat pump at 95°F (kBtu/hr)							
	CAP_{H} = Output heating capacity of geothermal heat pump at 47°F (kBtu/hr)							
	CAP _B = Assumed rated cooling capacity of a window A/C unit at $95^{\circ}F$ (kBtu/hr)							
	%COOL _{FULL} = Percentage of homes with existing cooling equipment equivalent of a whole home air conditioner (equivalent of 3 window A/C units) (%)							
	%COOL _{NONE} = Percentage of homes with no existing cooling equipment (%)							
	 %COOL_{PARTIAL} = Percentage of homes with existing partial cooling, equivalent of (1-2 window A/C units) (%) 							
	EFLH _c = Equivalent full load cooling hours (hours/yr)							
	AFUE _{BASE} = Annual fuel utilization efficiency of the existing heating system (%)							
	EER _B = Assumed energy efficiency ratio for existing cooling equipment (Btu/Watt-hr)							
	EER _E = Rated energy efficiency ratio for GSHP (Btu/Watt-hr)							
	COP _{EE} = COP of geothermal heat pump							
	EFLH _{HEAT} = Equivalent Full Load Hours of Heating (Btu/w-hr)							
	EFLH _{COOL} = Equivalent Full Load Hours of Cooling (Btu/w-hr)							
EFFICIENCY ASSUMPTI								
Baseline Efficiency	The baseline case is a Tier 1 standard efficiency geothermal heat pump.							
Efficient Measure	The high-efficiency case is a new Tier 3 geothermal heat pump system to provide heating and cooling.							

Central Geothermal (Ground source) Heat Pump											
PARAMETER VALUES											
Measure	CAP _H	CAP _c	COP _{BASE}	COPEE	EER _{BASE}	EER _{EE}	EFLH _H	EFLI	H _c	Life (yrs)	Cost (\$)
GSHP	36 ²³³	36 ²³⁴	3.6 ²³⁵	4.1 ²³⁶	16.2 ²³⁷	21.1 ²³⁸	2,706 ²³⁹	231	240	25 ²⁴¹	2,000 ²⁴²
IMPACT FACTORS											
Measure	IS		RR _E		R _D	CFs	CFw		FR		SO
GSHP	100%	6 ²⁴³	$100\%^{244}$	100)% ²⁴⁴	100% ²⁴⁵	100% ²⁴⁵	5	0% ²⁴	46	0% ²⁴⁶

²³³ As referenced in MA 2013 TRM: ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12, Table 4-9.

²³⁴ As referenced in MA 2013 TRM: ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12, Table 4-9.

²³⁵ Energy Start Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 1

²³⁶ Energy Start Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 3

²³⁷ Energy Start Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 1

²³⁸ Energy Start Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 3

²³⁹ Calculated based on 97.4 MMBTU average heating load for Maine household and 36 kBtuh Central GSHP heating capacity. Average heating load for Maine household is a weighted average value based on estimated heating energy and population distribution for Portland (96, 71%), Bangor (96, 23%), and Caribou (122, 5%).

²⁴⁰ NY TRM 2010, average EFLH for the New York cities of Binghamton and Massena. The hours for these cities were mapped to the Maine cities of Portland, Bangor (Binghamton) and Caribou (Massena). Hours were scaled by degree days for each city. Final hours represent an average weighted by city population.

²⁴¹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction.

²⁴² Average full cost of participant geothermal heat pump installation minus assumed cost of standard efficiency system. Represents installations where geothermal heat pump was the sole upgrade installed.

 $^{^{243}}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²⁴⁴ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁴⁵ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

²⁴⁶ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

On-Demand Natura	l Gas Water H	leater								
Last Revised Date	7/1/2014 (nev	v in PY2015)								
MEASURE OVERVIEW										
Description	This measure i	nvolves purchas	se and installation	on of new on-de	emand (instanta	neous) natural g	as-fired water			
	heater rather	eater rather than a new standard tank water heater. Energy savings are achieved by reducing the standby								
	losses from the	osses from the tank water heater.								
Energy Impacts	Natural Gas									
Sector	Residential									
Program(s)	Home Energy	Savings Program	ו							
End-Use	Heating, Cooli	ng								
Decision Type	New Construct	tion, Replaceme	nt							
DEEMED GROSS ENERGY	Y SAVINGS (UNI	T SAVINGS)								
Demand savings	$\Delta kW = N$	A								
Annual energy savings	$\Delta kWh/yr = 0$									
	Δ MMBtu/yr =	5.8								
GROSS ENERGY SAVING	S ALGORITHMS	(UNIT SAVINGS	5)							
Demand savings	$\Delta kW = NA$									
Annual Energy savings	$\Delta kWh/yr = 0$									
	Δ MMBtu/yr =	Δ MMBtu/yr = GAL x 8.33 x 1 x (T _{WH} – T _{in}) x (1/EF _{BASE} – 1/EF _{EE}) / 1,000,000								
Definitions	Unit		and natural gas		· · ·					
	GAL	= Average amo	ount of hot wate	er consumed an	nually per Maine	e household (gal	/yr/home)			
	Т _{WH}		r setpoint temp							
	T _{in}	= Average wate	er at the main ('	°F)						
	EF _{BASE}	= Energy factor	r for baseline st	and alone tank	water heater (%)				
	EF _{EE}	= Energy factor	r for on-demand	d water heater ((%)					
	8.33	•	ater: 8.33 lb/gal							
	1	•	of water: 1 Btu							
	1,000,000	= Conversion: 2	1,000,000 Btu/N	MMBtu						
EFFICIENCY ASSUMPTIO	NS									
Baseline Efficiency				-	ed tank water he					
Efficient Measure	The high-effici	ency case is a ne	ew on-demand	(instantaneous)	natural gas fire	d water heater v	vith energy			
	factor at least	0.88.								
PARAMETER VALUES				•		•				
Measure	GAL	T _{sp}	T _{in}	EF _{BASE}	EF _{EE}	Life (yrs)	Cost (\$)			
On-Demand Natural	18,655 ²⁴⁷	126.2 ²⁴⁸	50.8 ²⁴⁹	0.615 ²⁵⁰	0.88251	25 ²⁵²	1,171 ²⁵³			
Gas Water Heater	10,033	120.2	50.0	0.015	0.00	25	1,1/1			
IMPACT FACTORS	1		1	1	1	1	1			
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO			
On-Demand Natural	100% ²⁵⁴	100% ²⁵⁴	NA	NA	NA	0% ²⁵⁵	0% ²⁵⁵			
Gas Water Heater	10070	10070		117	117	0,0	070			

Baseline cost reflects cost of a new, code-compliant, storage, gas, hot water heater. Baseline cost based on DEER 2008 cost workbook.

²⁴⁷ Calculated using 51.1 gallons/day/home, based on people/home in ME, using scaled hot water amounts per NY and IN TRMs

²⁴⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014

²⁴⁹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources

²⁵⁰ Federal water heater standard, DoE Standard 10 CFR 430.32(d), EF of 0.615 effective 4/16/2015. Prior to 4/16/2015, EF is 0.594. EF assumes a 40 gallon storage tank ²⁵¹ Program minimum requirement

²⁵² GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction. ²⁵³ Average incremental cost of participant on-demand natural gas hot water heater unit. Represents installations where the unit was the sole upgrade installed.

²⁵⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²⁵⁵ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Low Income Program

Direct Install CFL Bulb									
Last Revised Date	7/1/2014 (New in	/1/2014 (New in PY2015)							
MEASURE OVERVIEW									
Description	This measure invo	olves the direct	t installation fo	or CFLs to r	eplace existing	g incand	lescent bul	bs.	
Primary Energy Impact	Electricity								
Sector	Low Income								
Program(s)	Low Income Prog	ram							
End-Use	Lighting								
Decision Type	Retrofit								
DEEMED GROSS ENERGY SAV	INGS (UNIT SAVIN	GS)							
Demand savings	$\Delta kW = 0.04$	49							
Annual energy savings	Δ kWh/yr = 36	:Wh/yr = 36							
GROSS ENERGY SAVINGS ALC	GORITHMS (UNIT S	AVINGS)							
Demand savings	$\Delta kW = \Delta W$	att _{CFL} / 1,000							
Annual energy savings	$\Delta kWh/yr = \Delta W$	$\Delta kWh/yr = \Delta Watt_{CFL} / 1,000 x Hours x 365$							
Definitions	Unit = 1	bulb							
		verage wattag			seline bulbs ar	nd progr	am CFLs (V	Natts)	
	Hours = A	verage daily o	perating hours	s (hrs/day)					
		onversion: 1,0	•						
	365 = C	onversion: 365	5 days per yea	ſ					
EFFICIENCY ASSUMPTIONS	1								
Baseline Efficiency	The baseline case		incandescent	bulb. Since	e the baseline	is the ex	isting equi	ipment, EISA	
	standards do not								
Efficient Measure	ENERGY STAR [®] ce	ertified CFL bul	b						
PARAMETER VALUES (DEEMI	D)	-							
Measure	$\Delta Watt_{CFL}$	Hours	Life (y		Cost (\$)				
Direct Install CFL Bulb	49 ²⁵⁶	2.04 ²⁵⁷	12.5	258	Actual				
IMPACT FACTORS									
Measure	ISR	RR _E	RR _D	CFs	CFw		FR	SO	
Direct Install CFL Bulb	100% ²⁵⁹	100% ²⁶⁰	100% ¹²	6.8% ²⁶	¹ 18.4% ²	261	0% ²⁶²	0% ²⁶²	

²⁵⁶ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, page 19.
²⁵⁷ Ibid, page 20.
²⁵⁸ Ibid, page 23.
²⁵⁹ EMT assumes 100% installation for direct install measures.
²⁶⁰ Realization rates are 100% since savings estimates are based on evaluation results.
²⁶¹ See Appendix B: Coincidence and Energy Period Factors.
²⁶² EMT assumes 100% NTG (0% free-ridership) for the low income sector.

Low Income Multifami	ly Gas Heat								
Last Revised Date	7/1/2014 (new	in PY2015)							
MEASURE OVERVIEW									
Description		his measure involves the installation of a new natural gas heating system and building weatherization							
	measures to rep	place the existi	ng natural gas	neating equipn	nent.				
Energy Impacts	Natural Gas								
Sector	Low Income								
Program(s)	Low Income Pro	ogram							
End-Use	Heating								
Decision Type	Retrofit								
DEEMED GROSS ENERGY S	AVINGS (UNIT SA	VINGS)							
Demand savings	$\Delta kW = NA$								
Annual energy savings	Δ kWh/yr = 0	skWh/yr = 0							
	Δ MMBtu _{GAS} = C	MMBtu _{GAS} = Calculated using project-specific data							
GROSS ENERGY SAVINGS A	LGORITHMS (UN	IT SAVINGS)							
Demand Savings	The program do	oes not estimat	e demand savi	ngs for these p	rojects.				
Annual Energy Savings	The program es	timates annua	l natural gas sa	vings using pro	ject-specific da	ita and building	modeling		
	software.								
Definitions	Unit		e multifamily ga						
	$\Delta MMBtu_{GAS}$		nnual natural ga	as savings for v	veatherization a	and heating syst	tem upgrade		
		(MMBtu)							
EFFICIENCY ASSUMPTIONS									
Baseline Efficiency	The baseline sce					<u> </u>			
Efficient Measure	The high-efficie	•		•	• •	•	natural gas		
	heating equipm	ent with new h	nigh-efficiency	natural gas hea	ating equipmen	t.			
PARAMETER VALUES						ГГ			
Measure	$\Delta MMBtu_{GAS}$					Life (yrs)	Cost (\$)		
Multifamily Gas Heat	Model					20 ²⁶³	Actual		
IMPACT FACTORS									
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO		
Multifamily Gas Heat	100% ²⁶⁴	100% ²⁶⁵	100% ²⁶⁵	NA	NA	0% ²⁶⁶	0% ²⁶⁶		

 ²⁶³ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1, value for weatherization measures.
 ²⁶⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%).
 ²⁶⁵ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.
 ²⁶⁶ EMT assumes 100% NTG (0% free-ridership) for the low income sector.

Furnace and Boiler	Retrofit									
Last Revised Date	7/1/2014 (new	/ in PY2015)								
MEASURE OVERVIEW	••••	· ·								
Description	This measure i	nvolves the rep	lacement of an o	existing furnace	or boiler with a	high-efficiency	furnace or			
	boiler of the same fuel type and capacity (i.e., no fuel switching).									
Energy Impacts	Natural Gas, H	eating Oil, Kero	sene, Propane, V	Wood, Pellet						
Sector	Residential, Lo	w Income								
Program(s)	Low Income Pr	ogram, Home E	nergy Savings P	rogram						
End-Use	Heating									
Decision Type	Retrofit									
DEEMED GROSS ENERGY	-	T SAVINGS)								
Demand savings	$\Delta kW = 0.000$									
Annual energy savings	Furnace Saving		er Savings							
	Δ kWh/yr = 0									
		Δ MMBtu _{GAS} = 3.0 Δ MMBtu _{GAS} = 2.7								
	$\Delta MMBtu_{OIL} = 21.4$ $\Delta MMBtu_{OIL} = 19.2$									
	-	$\Delta MMBtu_{KERO} = 2.0 \qquad \Delta MMBtu_{KERO} = 1.8$								
	$\Delta MMBtu_{PROP}$ =	2.0 ΔMM	ØBtu _{PROP} = 1.8							
	$\Delta MMBtu_{WOOD}$		ABtu _{wood} = 3.6							
GROSS ENERGY SAVING	S ALGORITHMS	(UNIT SAVINGS	5)							
Demand savings	$\Delta kW = 0$									
Annual Energy Savings	$\Delta kWh/yr = 0$									
	ΔMMBtu _{FUEL} /y		$FLH_{H} \times (EF_{EE} / EF$	_{BASE} – 1) / 1,000	x %FUEL					
Definitions	Unit = 1 new furnace or boiler									
	CAP _{INPUT} = Input capacity of the new equipment (kBtu/h)									
	$EFLH_{H} = Equivalent full load heating hours of the installed high-efficiency unit (hrs/yr)$									
	EF _{BASE} = Rated efficiency of the baseline existing unit (AFUE)									
	EF _{EE} = Rated efficiency of the high-efficiency unit (AFUE)									
	 1,000 = Conversion: 1,000 kBtu per MMBtu %FUEL = Home heating fuel distribution excluding coal and other 									
	%FUEL	= Home neat	ing tuel distrib	ution excludin	g coal and othe	er				
EFFICIENCY ASSUMPTIO										
Baseline Efficiency		the existing fu		- 11						
Efficient Measure		ency case is a n	ew furnace or be	oller that excee	ds the federal m	inimum efficien	cy standards.			
PARAMETER VALUES (D	-	FFLL			0/ 51151	1:50 (1.000)	Cost (¢)			
Measure	CAP _{INPUT} 80 ²⁶⁷	EFLH _H 1,510 ²⁶⁸	EF _{BASE} 75% ²⁶⁹	EF _{EE} 95% ²⁷⁰	%FUEL	Life (yrs) 25 ²⁷¹	Cost (\$) 7,200 ²⁷²			
Furnace Retrofit	80 80 ²⁶⁷	1,510 1,510 ²⁶⁸	75% 75% ²⁶⁹	95% 93% ²⁷⁰	Table D-1	25 25 ²⁷¹	7,200 10,100 ²⁷²			
Boiler Retrofit	80	1,510	/5%	93%	Table D-1	25	10,100			
IMPACT FACTORS	ICD	DD	DD	CE		ED.	SO			
Measure	ISR 100% ²⁷³	RR _E 100% ²⁷⁴	RR _D 100% ²⁷⁴	CF _s	CF _W	FR 0% ²⁷⁵	0% ²⁷⁵			
Furnace/Boiler Retrofit	100%	100%	100%	NA	NA	0%	0%			

²⁶⁷ Based on the assumed 40 Btuh/sqft furnace sizing ratio and a home size of 2,000 sqft.

²⁶⁸ Based on the NY 2010 TRM single family detached heating EFLH and adjusted to Maine using a HDD65 adjustment based on NOAA 1970-2000 Normals. The Maine reference cities used are Portland, Bangor and Caribou and the EFLH were weighted together using census population data.

²⁶⁹ Average AFUE for existing furnace/boiler based on EMT program tracking data. Code of Federal Regulations: http://www.ecfr.gov/cgi-bin/text-

idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10 specified a minimum AFUE of 78% for units manufactured before May 1, 2013. The 3% difference between minimum required AFUE and existing AFUE can be explained by the degradation of combustion efficiency; according to EMT's tracking database, the average manufactured year for existing furnaces/boilers was 1992.

²⁷⁰ Average AFUE for new high-efficiency equipment are based on EMT program tracking data.

²⁷¹ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1, value for new construction.

²⁷² Full costs based on the HESP FY14 Program for efficient boilers and furnaces

²⁷³ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²⁷⁴ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁷⁵ EMT assumes 100% NTG (0% free-ridership) for the low income sector.

Ductless Heat Pum	ip Retrofit							
Last Revised Date	7/1/2014							
MEASURE OVERVIEW								
Description	supplement the existing heating system in electric	on of a high efficiency ductless heat pump (DHP) system to c, gas, oil, kerosene, propane, wood and pellet heated oning units. The new DHP equipment may have one (single- utdoor unit.						
Energy Impacts	Electric, Heating Oil, Propane, Kerosene, Wood, F	ellet						
Sector	Residential							
Program(s)	Low Income Program							
End-Use	Cooling, Heating							
Decision Type	Retrofit							
	GY SAVINGS ALGORITHMS (UNIT SAVINGS)							
Demand Savings	For spaces with baseline electric heating:							
	ΔkW_{C} = -0.13, ΔkW_{SP} =- 0.01							
	ΔkW_{H} = 2.05, ΔkW_{WP} = 1.72							
	For spaces with baseline non-electric heating:							
	$\Delta kW_{c} = -0.13, \Delta kW_{sp} = -0.01$							
	$\Delta kW_{\rm H} = -1.18, \Delta kW_{\rm WP} = -0.94$							
Annual Energy		For spaces with baseline non-electric heating:						
Savings	For spaces with baseline electric heating:	$\Delta kWh/yr = -4,347$						
5441155	∆kWh/yr = 8,530	$\Delta kWh_{H} = -4,318$						
	∆kWh _H = 8,559	$\Delta kWh_{\rm c} = -29$						
	$\Delta kWh_{c} = -29$	$\Delta MMBTU = 78.1$						
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)							
Demand Savings	Heating Savings:							
Ū	Heating savings were calculated based on a mode <u>Cooling Savings:</u> $\Delta kW_{c} = [%COOL_{FULL} \times CAP_{COOL} \times [(1/EER_{B}) - (1/EER_{B})]$							
Annual Energy Savings	 capacity when the outside air temperatu DHP's contribution to heating does not a bin. Even in temperature bins in which 1 DHP, the DHP supplies 50% of the heating heating system.²⁷⁷ DHP heating output capacity and DHP heating is called for when outside air term. The amount of home's heating load displaced by 	distribution through the ducts. the home's heating load with 100% of its available heating ire is equal to 35°F. (i.e. heat pump balance point of 35°F) exceed 50% of the home's heating load in any temperature 00% of the home's heating load can be supplied by the ng load, and the remaining 50% is supplied by the existing eating efficiency vary linearly with outside air temperature.						

 ²⁷⁶ Based on Excel Workbook for Ductless Heat Pump Retrofit: see Table E-3. Heating Load Displaced by Ductless Heat Pump RetrofitError! Reference source not found. for heating load displaced by the measure.
 ²⁷⁷ 50% of load assumption accounts for reduced usage of DHP based on homeowners' lack of experience/confidence with a DHP. This value will be reevaluated for PY

²⁷⁷ 50% of load assumption accounts for reduced usage of DHP based on homeowners' lack of experience/confidence with a DHP. This value will be reevaluated for PY 2016 based on results of the on-going Bangor Hydro Evaluation. The validity of the resulting load displacement of 46% (% of the home's heating load) has been verified by benchmarking against findings from: Ductless Heat Pump Impact & Process Evaluation, 2013, Ecotope, <u>http://www.ecotope.com/wp/wpcontent/uploads/2014/04/2013_006_DHPImpactBilling.pdf</u>.

Ductless Heat Pun	np Retrofit												
	Cooling Savings:												
		.H _c × {[%COOL _{FULL} >	× CAP _{COOL} × [(1/EER _I	_B) – (1/EER _E)]] + [%	$COOL_{NONE} \times CAP_{COOL}$	$\times (- 1/EER_E)]$							
	 For home load equi For home the DHP w the same increased load and with exist For home 	 Cooling savings algorithm is based on the following key assumptions: For homes that have equivalent of whole home A/C already installed, DHP will replace the cooling load equivalent to the DHP's rated capacity. For homes that have existing partial cooling (i.e. 1 or 2 existing window A/C units), it is unknown if the DHP will be installed in the same areas served by the existing window A/C units. If installed in the same area, the DHP will replace the existing cooling load and result in positive savings due to increased efficiency. However, if installed in a different area, DHP may result in additional cooling load and hence negative savings. Without any in-situ data, zero net savings is assumed for homes with existing partial cooling. For homes with no existing cooling equipment, it is assumed that the DHP will be used to its full cooling capacity. 											
Definitions	$eq:linear_line$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$											
EFFICIENCY ASSUMPT	IONS												
Baseline Efficiency			e retains its existing tioning unit for coo		e, oil, kerosene, or p ling).	ropane heating							
Efficient Measure	_				tem and adds a new gram rebate: HSPF=1								
PARAMETER VALUES													
Measure	CAP _{COOL}	CAP _{HEAT}	EER _E	EER _B	%COOL _{FULL}	%COOL _{NONE}							
DHP Retrofit	14.5 ²⁷⁹	18.7 ²⁷⁸	12.3 ²⁷⁹	9.8 ²⁸⁰	40% ²⁸¹	21% ²⁸¹							
Measure	EFLH _c	EFF-HEAT _{BASE}	HSPF _E	DL _{HEAT}	Life (yrs)	Cost (\$)							
DHP Retrofit	231 ²⁸²	Table 1	Table E-1	Table 1	10 ²⁸³								

²⁷⁸ Average heating and cooling capacities of eligible Ductless Heat Pump units were found to be 18.7 kBTU/h and 14.8 kBTU/h, respectively.

²⁷⁹ Calculated based on Bangor Hydro DHP Pilot unit data; linear regression analysis of SEER and EER values.

²⁸⁰ Average existing cooling efficiency is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F:

http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is 9-12 years, most units will meet this standard.

²⁸¹ Portland Press Herald, http://www.pressherald.com/2014/05/26/put_power_rates_on_ice__that_s_a_cool_idea_/. In 2010, an estimated 79% of customers in ISO-New England region had room air conditioners. Of the 79%, 40% of homes have equivalent of whole home A/C (3 window A/C's); 39% of homes have total cooling

capacity equivalent of 1 or 2 window A/C units. The remaining 21% have no cooling equipment installed. 282 NY TRM 2010, average EFLH for the New York cities of Binghamton and Massena. The hours for these cities were mapped to the Maine cities of Portland, Bangor (Binghamton) and Caribou (Massena). Hours were scaled by degree days for each city. Final hours represent an average weighted by city population. ²⁸³ TRMs typically use 15-18 years for Commercial HVAC equipment. However, due to the anticipated long run times for DHP equipment, EMT assumes a shorter

measure life of 10 years.

²⁸⁴ Efficiency Maine program actual project costs from PY2014.

Ductless Heat Pump Retrofit										
IMPACT FACTORS										
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO			
DHP Retrofit Electric Baseline	100% ²⁸⁵	100% ²⁸⁶	100% ²⁸⁶	10.2% ²⁸⁷	83.7% ²⁸⁷	0% ²⁸⁸	0% ²⁸⁸			
DHP Retrofit Non- Electric Baseline	100%	100%	100%	10.2%287	79.6% ²⁸⁷	0%	0%			

Table 1. Parameters for Existing Heating Systems

Measure	Existing Heating System	Existing Heating System Efficiency (EFF-HEAT _{BASE}) ^A	Heating System Distribution Losses (DL _{HEAT}) ^B
DHP Retrofit (Electric Heat Baseline)	Electric Resistance	1.00	1.00
DHP Retrofit (Non-Electric Heat Baseline)	Ducted Fuel-Fired Heating System (Oil; Propane; Kerosene; Wood/Pellet)	0.75	1.33

^A Average AFUE for existing furnace/boiler based on EMT program tracking data. Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10</u> specified a minimum AFUE of 78% for units

manufactured before May 1, 2013. The 3% difference between minimum required AFUE and existing AFUE can be explained by the degradation of combustion efficiency; according to EMT's tracking database, the average manufactured year for existing furnaces/boilers was 1992.

^B Distribution losses are counted for ducted systems. 25% loss is assumed for all ducted systems, based on information from US DOE: Better Duct Systems for Home Heating and Cooling (<u>http://www.nrel.gov/docs/fy05osti/30506.pdf</u>)

²⁸⁵ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

²⁸⁶ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁸⁷ See Appendix B.

²⁸⁸ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Low Flow Kitchen Aera	tor									
Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	This meas	ure involves	the replac	cement of e	xisting kit	chen aer	ators with	low-flow	aerators. Th	e savings
	assume al	sume all fixtures are served by electric water heaters.								
Primary Energy Impact	Electric (a	tric (additional impacts include: water)								
Sector	Residentia	ıl 👘								
Program(s)	Low Incon	ne Program								
End-Use	Domestic	Hot Water								
Decision Type	Retrofit									
DEEMED GROSS ENERGY SA	VINGS (UN	T SAVINGS								
Demand Savings	ΔkW	= 4.414								
Annual Energy Savings	∆kWh/yr	= 283								
Annual Water Savings	∆Gallons/	yr = 2,696								
GROSS ENERGY SAVINGS A		-	-							
Demand Savings		= ∆kWh/yr /								
Annual Energy Savings	∆kWh/yr	= N _{ppl} × t × 3	865 × (GPN	1 _{BASE} – GPM	_{EE}) / N _{fixture}	_{es} ×ρ _{H20} >	< Ср _{н20} / З,	413 × (Т _{рог}	, - T _{in}) / RE _{E\}	VH
Annual Water Savings		$yr = N_{ppl} \times t$			PM _{EE}) / N _{fi}	xtures				
Definitions	Unit									
	N _{ppl}									
	t	= total time all kitchen aerators are used per day per person (min/day/person)								
	GPM _{EE}									
		N _{fixtures} = number of kitchen sinks (sinks/home) Γ _{pou} = temperature at point of use (°F)								
	T _{pou} T _{in}			water main:						
	RE _{EWH}	-		ncy of elect		ter heat	٥r			
	ρ_{H20}			r (8.33 lbs p			-1			
	Ср _{н20}			water: 1 Btu		/				
	3,413	-		13 Btu per k						
	365			days per ye						
	60			ninutes per						
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	Federal st	andards set	a maximur	m 2.2 GPM	for faucet	aerators	s manufact	ured after	January 1,	1994. ²⁸⁹
Efficient Measure		ency Kitche								
PARAMETER VALUES (DEEN	1ED)									
Measure	t	N _{ppl}	GPM _{BASE}	GPM _{EE}	N _{fixtures}	T _{pou}	T _{in}	RE _{EWH}	Life (yrs)	Cost (\$
				1.5 Err						
				or!						
				Bookm						
Low Flow Kitchen Aerator	4.51 ²⁹⁰	2.34 ²⁹¹	2.2 ²⁸⁹	ark	1 ²⁹²	93 ²⁹⁰	50.8 ²⁹³	0.98 ²⁹⁴	5 ²⁹⁵	2 ²⁹⁶
				not						
				define						
				d.						
IMPACT FACTORS										
Measure	ISR	RF	-	RR _D		CF _S % ²⁹⁹	CF _W 1.2% ²⁹⁹		FR	SO 0% ³⁰⁰
Low Flow Kitchen Aerator	100% ²⁹⁷	100%	1230	100% ²⁹⁸		0/233	1 70/295		% ³⁰⁰	no/ 300

²⁸⁹ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

²⁹⁰ The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.

²⁹¹ American Community Survey, 2011 1 year estimate for population of Maine: http://www.census.gov/acs/www/

²⁹² Assumed value: 1 kitchen faucet per home.

²⁹³ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

²⁹⁴ NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf

²⁹⁵ 2010 Ohio TRM: conservative estimate based on review of TRM assumptions from other states.

²⁹⁶ 2010 Ohio TRM: Navigant Consulting, Ontario Energy Board; "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

Low Flow Bathroom Aer	ator									
Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	EPA Water	Sense Low	Flow Aera	tor. This me	easure involv	ves the re	eplacement	t of existing	g bathroom a	erators
	with low-fl	ow aerator	s. The sav	ings assume	e all fixtures	are serve	d by electr	ic water he	eaters.	
Primary Energy Impact	Electric (ad	ditional im	pacts inclu	ude: water)						
Sector	Residential									
Program(s)	Low Incom	e Program								
End-Use	Domestic H	lot Water								
Decision Type	Retrofit									
DEEMED GROSS ENERGY SAV	INGS (UNIT S	SAVINGS)								
Demand Savings	ΔkW	= 3.682								
Annual Energy Savings	∆kWh/yr	= 29								
Annual Water Savings	∆Gallons/y	r = 333								
GROSS ENERGY SAVINGS ALG	ORITHMS (L	INIT SAVIN	IGS)							
Demand Savings	ΔkW	= ∆kWh/yr	$/(N_{ppl} \times t)$	× 365 / 60 /	[/] N _{fixture})					
Annual Energy Savings	∆kWh/yr	$kWh/yr = N_{ppl} \times t \times 365 \times (GPM_{BASE} - GPM_{EE}) / N_{fixture} \times \rho_{H20} \times Cp_{H20} / 3,413 \times (T_{pou} - T_{in}) / RE_{EWH}$								
Annual Water Savings					GPM _{EE}) / N _{fixt}			·		
Definitions	Unit	Jnit = 1 bathroom aerator								
	GPM _{BASE}	GPM _{BASE} = baseline flowrate of bathroom aerator (gallon/min)								
	GPM _{EE}	= measur	e flowrate	of bathroo	m aerator (g	gallon/mi	n)			
	t				ors are used	• •	per person	ı (min/day/	person)	
	N _{ppl}		• •	•	(person/hon	ne)				
	N _{fixture}				inks/home)					
	T _{pou}	•		oint of use	. ,					
	T _{in}			ater mains						
	RE _{EWH}		-	-	c hot water h	neater				
	ρ _{H20}			(8.33 lbs pe	• ·					
	Ср _{н20}			ater: 1 Btu/						
	3,413		-	3 Btu per kV						
	365			lays per yea						
	60	= Convers	sion: 60 m	inutes per ł	nour					
EFFICIENCY ASSUMPTIONS							<u> </u>			. 301
Baseline Efficiency	Federal sta	ndards set	a maximu	m 2.2 GPM	for faucet a	erators n	nanufactur	ed after Jar	1uary 1, 1994	
Efficient Measure		erSense Hi	igh Efficier	ncy Bathroo	om Sink Fauc	et (1.5 G	PIMI)			
PARAMETER VALUES (DEEME	_		N	CDM	CDM	-	-	DE	Life (com)	
Measure	t 1.65 ³⁰³	N _{ppl} 2.34 ³⁰⁴	N _{fixture} 2.96 ³⁰⁵	GPM _{BASE} 2.2 ³⁰¹	GPM _{EE}	T _{pou} 86 ³⁰³	T _{in} 50.8 ³⁰⁶	RE _{EWH}	Life (yrs) 5 ³⁰⁸	Cost (\$) 2 ³⁰⁹
Low Flow Bathroom Aerator	1.65	2.34	2.96	2.2	1.5	86	50.8	0.98	5	2
IMPACT FACTORS	ICD				05		05	50		0
Measure	ISR	RR	E	RR _D	CFs		CFw	FR		60

²⁹⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

²⁹⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

²⁹⁹ See Appendix B: Coincidence and Energy Period Factors.

³⁰⁰ EMT assumes 0% freeridership and 0% spillover (i.e., NTG = 100%) for all measures implemented through the low income program.

³⁰¹ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

³⁰² http://www.epa.gov/WaterSense/docs/faucet_spec508.pdf

³⁰³ The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.

³⁰⁴ American Community Survey, 2011 1 year estimate for population of Maine: http://www.census.gov/acs/www/

³⁰⁵ 2009 Residential Energy Consumption Survey (RECS). Microdata for CT, ME, NH, RI, and VT single-family detached homes; assuming 1.5 faucets per full bathroom and 1 per half bathroom. ³⁰⁶ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

³⁰⁷ NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf

³⁰⁸ 2010 Ohio TRM: conservative estimate based on review of TRM assumptions from other states.

³⁰⁹ 2010 Ohio TRM: Navigant Consulting, Ontario Energy Board; "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

Low Flow Bathroom Aerator 100% ³¹⁰ 100% ³¹¹ 100% ³¹¹ 0.3% ³¹² 0.4% ³¹² 0% ³¹³ 0% ³¹³	v Bathroom Aerator	ator 100% ³¹⁰ 100% ³¹¹	100% ³¹¹ 0.3% ³	¹² 0.4% ³¹² 0% ³¹³	0% ³¹³
---	--------------------	--	---------------------------------------	---	-------------------

Low Flow Showerhead	1						
Last Revised Date	7/1/2013						
MEASURE OVERVIEW							
Description	PA WaterSense Low Flow Showerhead. This measure involves the replacement of existing howerheads with low-flow showerheads. The savings assume all fixtures are served by electric water meaters.						
Primary Energy Impact	Electric (additional impacts include: water)						
Sector	Residential						
Program(s)	Low Income Program						
End-Use	Domestic Hot Water						
Decision Type	Retrofit						
DEEMED ENERGY SAVINGS	(UNIT SAVINGS)						
Demand Savings	ΔkW = 3.751						
Annual Energy Savings	$\Delta kWh/yr = 150$						
Annual Water Savings	$\Delta Gallons/yr = 1,200$						
GROSS ENERGY SAVINGS A	ALGORITHMS (UNIT SAVINGS)						
Demand Savings	$\Delta kW = \Delta kWh/yr / (N_{ppl} \times t \times 365 \times N_{showers} / 60 / N_{fixture})$						
Annual Energy Savings	$ \Delta kWh/yr = N_{ppl} \times t \times 365 \times N_{showers} / N_{fixture} \times (GPM_{BASE} - GPM_{EE}) \times \rho_{H20} \times C_{H20} / 3,413 \times (T_{pou} - T_{in}) / RE_{EWH} $						
Annual Water Savings	$\Delta Gallons/yr = N_{ppl} \times t \times 365 \times N_{showers} / N_{fixture} \times (GPM_{BASE} - GPM_{EE})$						
Definitions	Unit = 1 efficient showerhead						
	GPM _{BASE} = baseline flowrate of showerhead (gallon/min)						
	GPM _{EE} = measure flowrate of showerhead (gallon/min)						
	t = length of shower (minutes/shower)						
	N _{ppl} = number of people per home (person/home)						
	N _{showers} = number of showers per person per day (showers/person/day)						
	N _{fixture} = number of showerheads (showerhead/home)						
	T _{pou} = temperature at point of use (°F)						
	T _{in} = temperature of water mains (°F)						
	RE _{EWH} = recovery efficiency of electric hot water heater						
	ρ_{H20} = Density of water: 8.33 lbs per gallons						
	C _{H20} = Specific heat of water: 1 Btu/lb/°F						
	3,413 = Conversion: 3,413 Btu per kWh						
	365 = Conversion: 365 day per year						
	60 = Conversion: 60 minutes per hour						
EFFICIENCY ASSUMPTIONS							
Baseline Efficiency	Federal standards set a maximum 2.5 GPM for all showerheads manufactured after January 1, 1994. ³¹⁴						
Efficient Measure	USEPA Watersense High Efficiency Showerhead (2.0 GPM) ³¹⁵						
PARAMETER VALUES (DEE							
Measure	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Low Flow Showerhead	7.83^{316} 2.34^{317} 0.61^{316} 1.7^{318} 2.5^{314} 2.0^{319} 101^{316} 50.8^{320} 0.98^{321}						

³¹⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³¹¹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³¹² See Appendix B: Coincidence and Energy Period Factors.

³¹³ EMT assumes 0% freeridership and 0% spillover (i.e., NTG = 100%) for all measures implemented through the low income program.

³¹⁴ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

³¹⁵ Water-Efficient Showerheads, WaterSense: An EPA Partnership Program, <u>http://www.epa.gov/WaterSense/products/showerheads.html</u>

³¹⁶ The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group. ³¹⁷ American Community Survey, 2011 1 year estimate for population of Maine: http://www.census.gov/acs/www/

³¹⁸ 2009 Residential Energy Consumption Survey (RECS). Number of full bathrooms for single family detached home, microdata for CT, ME, NH, RI, and Vermont.

³¹⁹ Measure flowrate: <u>http://www.epa.gov/WaterSense/products/showerheads.html</u>

³²⁰ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

³²¹ NREL, Building America Research Benchmark Definition, 2009, p.12, <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>

Low Flow Showerhead									
Measure	Life (yrs)	Cost (\$)							
Low Flow Showerhead	5 ³²²	6 ³²³							
IMPACT FACTORS									
Measure	ISR	RR _F	RR _D		CFs	CF_W	FR	SO	
Low Flow Showerhead	100% ³²⁴	100%3	²⁵ 100% ³²	25 0	.5% ³²⁶	0.8% ³²⁶	0% ³²⁷	0% ³²⁷	
Domestic Water Heater Temperature Turn-Down									
Last Revised Date	7/1/2013								
MEASURE OVERVIEW									
Description	by at leas	The hot water temperature set point of the existing electric domestic water heater (DWH) is reduced by at least 10°F. ³²⁸ Savings derive primarily from reducing the energy lost to leaks, dishwashers and standby losses. The savings assume measures are implemented on electric water heaters.							
Primary Energy Impact	Electric		-		-				
Sector	Resident	al							
Program(s)	Low Inco	me Program							
End-Use	Domesti	: Hot Water							
Decision Type	Retrofit	Retrofit							
DEEMED GROSS ENERGY SAVINGS (UNIT SAVINGS)									
Demand Savings	Δ kW	$\Delta kW = 0.010$							
Annual Energy Savings	∆kWh/yr	= 87							
GROSS ENERGY SAVINGS AL	GORITHMS	(UNIT SAVING	S)						
Demand Savings	Δ kW	= $\Delta kWh/yr /$	Hours						
Annual Energy Savings	∆kWh/yr	= ΔkWh_{EWHTD}							
Definitions	Unit ∆kWh _{EWF} Hours	TD = Avera	emperature turr ge annual energ Il operating hou	y savings f	or 10°F tur	ndown on	electric water h	neater (kWh/yr)	
EFFICIENCY ASSUMPTIONS									
Baseline Efficiency	Electric D	WH at original	set-point tempe	rature of 1	L30°F or gr	eater.			
Efficient Measure	tempera		t temperature 1 by less than 10°l . ³²⁹		-	•		•	
PARAMETER VALUES (DEEN	ED)								
Measure	$\Delta \mathbf{k}$	Wh _{EWHTD} 87 ³³⁰	Hours		Life (yrs)	Cos	st (\$)	
DWH Turn-Down		87 ³³⁰	8,760 ³	31	4 ³³	32	0	333	
IMPACT FACTORS		I	I						
Measure	ISR	RR _E	RR _D	CFs		CFw	FR	SO	
DWH Turn-Down	100% ³³	¹ 100% ³³⁵	100% ³³⁵	9.6% ³³	. 13	.3% ³³⁶	0% ³³⁷	0% ³³⁷	

³²² 2010 Ohio TRM: conservative estimate based on review of TRM assumptions from other states.

³²³ 2010 Ohio TRM: Navigant Consulting, Ontario Energy Board; "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

³²⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³²⁵ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³²⁶ See Appendix B: Coincidence and Energy Period Factors.

³²⁷ EMT assumes 0% freeridership and 0% spillover (i.e., NTG = 100%) for all measures implemented through the low income program.

³²⁸ Engineering assumption, conservative compared to Illinois 2012 TRM which claims 15°F setback.

³²⁹ The risk of bacteria growing in the stored hot water increases when the set temperature is reduced below 120°F:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094925/#B5

³³⁰ Savings are captured by calculating energy savings from reducing the temperature of the water consumed by the following end uses: leaks, clothes washers and the use categorized by "other." No savings are claimed from hot water end uses such as showering or faucet use because it is assumed that the user will continue to operate the end use at the same temperature as prior to implementing this measure. By operating at the same temperature, the user uses water with the same amount of energy as before- thereby not reducing energy use directly. Daily water usages are based on EPA's Water Sense guide: http://www.epa.gov/WaterSense/docs/home_suppstat508.pdf. Savings also include reduced standby losses.

³³¹ EMT assumes the water heater operates continuously to maintain the water heater temperature set point.

³³² GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

³³³ Assumes temperature turn-down is performed as part of an audit or direct install program.

³³⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³³⁵ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³³⁶Appendix B: Coincidence and Energy Period Factors.

³³⁷ EMT assumes 0% freeridership and 0% spillover (i.e., NTG = 100%) for all measures implemented through the low income program.

Domestic Water Heater	· Pipe Insul	ation						
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	electric dor		ter heater (DV	VH). The savi	ngs assume n	neasures ar	water pipes so e implemente emented.	-
Primary Energy Impact	Electric							
Sector	Residential							
Program(s)	Low Income	e Program						
End-Use	Domestic H	ot Water						
Decision Type	Retrofit							
DEEMED GROSS ENERGY SA	VINGS (UNIT	SAVINGS)						
Demand Savings	ΔkW	= 0.012						
Annual Energy Savings	∆kWh/yr	= 103						
GROSS ENERGY SAVINGS AL	GORITHMS (UNIT SAVING	S)					
Demand Savings	ΔkW	= $\Delta kWh/yr /$	Hours					
Annual Energy Savings	∆kWh/yr							
Definitions	Unit							
	GPD	PD = Average daily hot water consumption (gallons/day)						
	ρ _{H2O}	= Density of	water (8.33 ll	o/gallon)				
	C _{H20}	= Specific he	eat of water (1	Btu/lb-°F)				
	Т _{WH}		ter temperati		• •			
	T _{in}		ure of water n				'F)	
	RE _{EWH}	-	Efficiency for l			ater		
	SF _{PI}	-	ctor for addin	• · ·				
	Hours	•	erating hours		ater (hrs/yr)			
	365		n: 365 days pe					
	3,413	= Conversio	n: 3,413 Btu p	er kWh				
EFFICIENCY ASSUMPTIONS								
Baseline Efficiency							o heat trap ins	
Efficient Measure		r pipes with 1	0 teet of pipe	insulation in	stalled. Insu	ation must	be R-3 or grea	ater.
PARAMETER VALUES (DEEM						· · ·		a . (b)
Measure	GPD	Т _{WH} 125 ³⁴⁰	T _{in} 50.8 ³⁴¹	RE _{EWH} 0.98 ³⁴²	SF _{PI} 0.03 ³⁴³	Hours 8,760 ³⁴⁴	Life (yrs) 15 ³⁴⁵	Cost (\$) \$70 ³⁴⁶
DWH Pipe Insulation IMPACT FACTORS	51.1 ³³⁹	125	50.8	0.98	0.03	8,76054	15	\$70°**
Measure	ISR	RR _E	RR _D	CFs	C	Fw	FR	SO
DWH Pipe Insulation	100% ³⁴⁷	100% ³⁴⁸	100% ³⁴⁸	100% ³⁴⁹	100	% ³⁴⁹	0% ³⁵⁰	0% ³⁵⁰
	/-				-00	-		

³⁴² NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf

³³⁸ Complies with International Residential Code 2009 section N1103.3: mechanical system piping insulation.

³³⁹ Daily household consumption of hot water calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996.

³⁴⁰ The temperature set point is 10 degrees below the typical temperature set point of 135 F, assuming that the temperature turn-down measure is implemented. ³⁴¹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

³⁴³ ACEEE Report Number E093, p. 117, April 2009, Potential for Energy Efficiency, Demand Response, and Onsite Solar Energy in Pennsylvania: "Insulating 10 feet of exposed pipe in unconditioned space, %" thick".

EMT assumes the water heater operates continuously to maintain the water heater temperature set point.

³⁴⁵ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

³⁴⁶ NREL, National Residential Efficiency Measures Database, assuming R-5 insulation. The costs range from \$44 to \$92, with an average of \$70.

³⁴⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³⁴⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³⁴⁹ See Appendix B: Coincidence and Energy Period Factors.

³⁵⁰ EMT assumes 0% freeridership and 0% spillover (i.e., NTG = 100%) for all measures implemented through the low income program.

Domestic Water Heater	[.] Wrap								
Last Revised Date	7/1/2013								
MEASURE OVERVIEW									
Description	heater (DWH model that de 1991. The say	avings are captured by installing an insulating blanket (wrap) on an existing electric domestic water eater (DWH) in an unconditioned space. For savings to be captured, the DWH must be an inefficient nodel that does not meet the National Appliance Energy Conservation Act that went into effect in 991. The savings assume measures are implemented on electric water heaters and that the emperature turn-down measure has been implemented.							
Primary Energy Impact	Electric								
Sector	Residential								
Program(s)	Low Income I	Program							
End-Use	Domestic Hot	t Water							
Decision Type	Retrofit								
DEEMED GROSS ENERGY SA	VINGS (UNIT S	AVINGS)							
Demand Savings	$\Delta kW =$	0.010							
Annual Energy Savings	Δ kWh/yr =	89							
GROSS ENERGY SAVINGS AL	GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	$\Delta kW = 2$	∆kWh/yr / Hou	rs						
Annual Energy Savings	$\Delta kWh/yr = [$	$kWh/yr = [GPD \times 365 \times \rho_{H2O} \times Cp_{H2O} \times (T_{WH} - T_{in}) / 3,413] \times (1/EF_{BASE} - 1 / EF_{EE})$							
Definitions	Unit= 1 water heater with tank wrapGPD= Average daily hot water consumption (gallons/day)365= Conversion: 365 days per year ρ_{H20} = Density of water (8.33 lb/gallon) Cp_{H20} = Specific heat of water (1 Btu/lb-°F) T_{WH} = Water heater temperature set point (°F) T_{in} = Temperature of water mains (water into the water heater) (°F)3,413= Conversion: 3,413 Btu per kWh EF_{BASE} = Energy factor for baseline electric water heater EF_{EE} = Energy factor for baseline electric water heater with wrapHours= Annual operating hours for water heater (hrs/yr)								
EFFICIENCY ASSUMPTIONS	I								
Baseline Efficiency								nconditioned s	
Efficient Measure		VH manufactur	ed before 1	991 with an	insulat	ting wr	ap installe	d in an uncond	itioned
	space.								
PARAMETER VALUES (DEEM	1	-	- I			. 1			0 (A)
Measure	GPD 51.1 ³⁵¹	Т _{WH} 125 ³⁵²	T _{in} 50.8 ³⁵³	EF _{BASE} 0.86 ³⁵⁴	EF 0.88	EE 354	Hours 8,760 ³⁵⁵	Life (yrs)	Cost (\$) \$30 ³⁵⁷
EWH with tank wrap	51.1	125	50.8	0.86	0.88	5	8,760	/	\$3U
IMPACT FACTORS	ICD	00	00						
EWH with tank wran	ISR 100% ³⁵⁸	RR _E 100% ³⁵⁹	RR _D 100% ³⁵⁹	CF 100%		100	CF _W 0% ³⁶⁰	FR 0% ³⁶¹	SO 0% ³⁶¹
EWH with tank wrap	100%	100%	100%	100%	0	100	0%	0%	0%

³⁵¹ Daily household consumption of hot water calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996.

³⁵² The temperature set point is 10 degrees below the typical temperature set point of 135 F, assuming that the temperature turn-down measure is implemented. ³⁵³ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

³⁵⁴ The Oak Ridge study predicted that wrapping a 40 gal water heater would increase Energy Factor of a 0.86 electric DHW tank by 0.02 (to 0.88) "Meeting the Challenge: The Prospect of Achieving 30 percent Energy Savings Through the Weatherization Assistance Program" by the Oak Ridge National Laboratory - May 2002. http://www.cee1.org/eval/db_pdf/309.pdf

³⁵⁵ EMT assumes the water heater operates continuously to maintain the water heater temperature set point.

³⁵⁶ DEER 2008

³⁵⁷ http://energy.gov/energysaver/projects/savings-project-insulate-your-water-heater-tank

³⁵⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³⁵⁹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³⁶⁰ See Appendix B: Coincidence and Energy Period Factors.

³⁶¹ EMT assumes 0% freeridership and 0% spillover (i.e., NTG = 100%) for all measures implemented through the low income program.

Appendix A: Glossary

Definitions are based primarily on the Northeast Energy Efficiency Partnerships (NEEP), Regional Evaluation, Measurement & Verification (EMV) Forum, Glossary of Terms, Version 2.0 (PAH Associates, March 2011), cited at the end of each definition as: [NEEP EMV Glossary].

Adjusted Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated. It adjusts for such factors as data errors, installation and persistence rates and hours of use, but does not adjust for free ridership or spillover. This can be calculated as an annual or lifetime value. [NEEP EMV Glossary]

Actual: Actual means the project specific value that is recorded in the Project Application/Documentation for this measure.

Algorithm: An equation or set of equations, more broadly a method, used to calculate a number. In this case, it is an estimate of energy use or energy savings tied to operation of a piece of equipment or a system of interacting pieces of equipment. An algorithm may include certain standard numerical assumptions about some relevant quantities, leaving the user to supply other data to calculate the use or savings for the particular measure or equipment. [NEEP EMV Glossary]

Annual Demand Savings: The maximum reduction in electric or gas demand in a given year within defined boundaries. The demand reduction is typically the result of the installation of higher efficiency equipment, controls, or behavioral change. The term can be applied at various levels, from individual projects to energy efficiency programs, to overall program portfolios. [NEEP EMV Glossary]

Annual Energy Savings: The reduction in electricity usage (kWh) or in fossil fuel use in thermal unit(s) from the savings associated with an energy saving measure, project, or program in a given year. [NEEP EMV Glossary]

Average Annual Operating Hours: The annual hours that equipment is expected to operate.

Baseline Efficiency: The assumed efficiency condition of the baseline equipment that is being replaced by the subject energy efficiency measure. It is used to determine the energy savings obtained by the more efficient measure. [NEEP EMV Glossary, edited]

Btu: The standard measure of heat energy. It takes one Btu to raise the temperature of one pound of water one degree Fahrenheit from 58.5 to 59.5 degrees under standard pressure of 30 inches of mercury at or near its point of maximum density. [NEEP EMV Glossary]

Coincident Demand: The demand of a device, circuit or building that occurs at the same time as the peak demand of a system load or some other peak of interest. The peak of interest should be specified. [NEEP EMV Glossary]

Coincidence Factor (CF): The ratio of the average hourly demand during a specified period of time of a group of measures to the sum of their individual maximum demands (or connected loads) within the same period. [NEEP EMV Glossary, edited]

Deemed Savings: An estimate of energy or demand savings for a single unit of an installed energy efficiency measure that (a) has been developed from data sources and analytical methods that are widely considered acceptable for the measure and purpose, and (b) is applicable to the situation being evaluated. A measure with deemed savings will have

the same savings per unit. Individual parameters used to calculate savings and/or savings calculation methods can also be deemed. [NEEP EMV Glossary, edited]

Delta Watts: The difference in the wattage between existing or baseline equipment and its more efficient replacement or installation at a specific time, expressed in watts or kilowatts. [NEEP EMV Glossary]

Demand: The time rate of energy flow. Demand usually refers to the amount of electric energy used by a customer or piece of equipment at a specific time, expressed in kilowatts (kW). [NEEP EMV Glossary]

ENERGY STAR®: A joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy designed to reduce energy use and the impact on the environment. The Energy Star label is awarded to products that meet applicable energy efficiency guidelines and to homes and commercial buildings that meet specified energy efficiency standards. [NEEP EMV Glossary]

Free Rider: A program participant who would have implemented the program measure or practice in the absence of the program. Free riders can be: 1) total, in which the participant's activity would have completely replicated the program measure; 2) partial, in which the participant's activity would have partially replicated the program measure; or 3) deferred, in which the participant's activity would have completely replicated the program measure, but at a future time than the program's timeframe. [NEEP EMV Glossary]

Free Ridership Rate (FR): The percent of energy savings through an energy efficiency program attributable to free riders. [NEEP EMV Glossary, edited]

Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated and unadjusted by any factors. [NEEP EMV Glossary]

Hours of Use (HOU) or Operating Hours: The average number of hours a measure is in use during a specified time period, typically a day or a year. [NEEP EMV Glossary]

Incremental Cost: The difference between the cost of existing or baseline equipment/service and the cost of energy efficient equipment/service. [NEEP EMV Glossary]

In-Service Rate (ISR): The percentage of energy efficiency measures incented by a program that are actually installed and operating. The in-service rate is calculated by dividing the number of measures installed and operating by the number of measures incented by an efficiency program in a defined period of time. [NEEP EMV Glossary]

Kilowatt (kW): A measure of the rate of power used during a preset time period (e.g. minutes, hours, days or months) equal to 1,000 watts. [NEEP EMV Glossary]

Kilowatt-Hour (kWh): A common unit of electric energy; one kilowatt-hour is numerically equal to 1,000 watts used for one hour. [NEEP EMV Glossary]

Lifetime Energy Savings: The energy savings over the lifetime of an installed measure calculated by multiplying the annual energy usage reduction associated with a measure by the expected lifetime of the measure. [NEEP EMV Glossary, edited]

Measure Life: The length of time that a measure is expected to be functional. Measure Life is a function of: (1) *equipment life* means the number of years that a measure is installed and will operate until failure; and (2) *measure persistence* takes into account business turnover, early retirement of installed equipment and other reasons measures

might be removed or discontinued. Measure Life is sometimes referred to as expected useful life (EUL). [NEEP EMV Glossary]

Meter Level Savings: Savings from energy efficiency programs that are at the customer meter or premise level. [NEEP EMV Glossary]

Net Savings: The savings that is attributable to an energy efficiency program. Net savings differs from gross savings because it includes the effects of the free-ridership and/or spillover rates.

Net-to-Gross Ratio (NTGR): The ratio of net savings to gross savings. The NTGR may be determined from the freeridership and spillover rates (NTGR=1-FR+SO), if available, or it may be a distinct value relating gross savings to the net effect of the program with no separate specification of FR and SO values; it can be applied separately to either energy or demand savings.

Realization Rate (RR): The ratio of savings adjusted for data errors and for evaluated or verified results (verified) to program tracking system savings data (e.g. initial estimates of project savings).

Seasonal Energy Efficiency Ratio (SEER): The total cooling output of a central AC unit in Btus during its normal usage period for cooling divided by the total electrical energy input in watt-hours during the same period, as determined using specified federal test procedures. [NEEP EMV Glossary]

Spillover: Reductions in energy consumption and/or demand caused by the presence of an energy efficiency program, beyond the program-related gross savings of the participants and without financial or technical assistance from the program. There can be participant and/or non-participant spillover. *Participant spillover* is the additional energy savings that occur when a program participant independently installs energy efficiency measures or applies energy saving practices after having participated in the efficiency program as a result of the program's influence. *Non-participant spillover* refers to energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings practices as a result of a program's influence. [NEEP EMV Glossary]

Spillover Rate (SO): Estimate of energy savings attributable to spillover effects expressed as a percent of savings installed by participants through an energy efficiency program. [NEEP EMV Glossary]

Appendix B: Coincidence and Energy Period Factors

Coincidence factors are used to determine the average electric demand savings during the summer and winter on-peak periods as defined by the ISO-NE Forward Capacity Market (FCM). The on-peak demand periods are defined as follows:

- Summer On-Peak: 1:00 to 5:00 PM on non-holiday weekdays in June, July and August.
- <u>Winter On-Peak</u>: 5:00 to 7:00 PM on non-holiday weekdays in December and January.

Energy period factors are used to allocate the annual energy savings into one of the four energy periods. This allocation is performed in order to apply the appropriate avoided cost values in the calculation of program benefits. The four energy periods are defined as follows:³⁶²

- Winter Peak: 7:00 AM to 11:00 PM on non-holiday weekdays in October through May (8 months).
- <u>Winter Off Peak</u>: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays in October through May (8 months).
- **<u>Summer Peak</u>**: 7:00 AM to 11:00 PM on non-holiday weekdays in June through September (4 months).
- <u>Summer Off Peak</u>: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays in June through September (4 months).

Table B-1 includes a listing of measure coincidence factors and energy period allocations.

³⁶² <u>http://www.iso-ne.com/support/training/glossary/index-p5.ht</u>ml

Table B-1. Retail and Residential Coincidence Factors and Energy Period Factors									
		Coincider (C	ice Factor F)	Enei	rgy Period I	Factors (E	PF)	Foot Refei	note rence
Measure Name	End-Use	Winter	Summer	Wir	iter	Sum	mer		
		On-Peak	On-Peak	Peak	Off Peak	Peak	Off Peak	CF	EPF
CFL Bulb	Lighting	20.2%	9.6%	44.5%	31.5%	13.2%	10.8%	36	53
LED Bulb	Lighting	20.2%	9.6%	44.5%	31.5%	13.2%	10.8%	36	53
Refrigerator	Refrigeration	100.0%	100.0%	33.1%	33.5%	16.6%	16.8%	364	365
Freezer	Refrigeration	100.0%	100.0%	33.1%	33.5%	16.6%	16.8%	364	366
Room AC	Cooling	0.0%	11.1%	0.7%	2.8%	53.3%	43.2%	36	57
Room Air Purifier	Cooling	66.7%	66.7%	30.4%	36.2%	15.6%	17.9%	36	58
Dehumidifier	Cooling	100.0%	100.0%	17.9%	15.5%	33.9%	32.7%	364	365
Dishwasher	Process	4.0%	2.2%	39.7%	26.8%	20.3%	13.1%	36	59
Clothes Washer	Process	100%	100%	40.0%	26.6%	20.1%	13.3%	36	55
Electric Water Heater	Domestic Hot Water	13.3%	9.6%	40.9%	25.7%	20.9%	12.5%	12.5% 369	
Heat Pump Water Heater	Domestic Hot Water	100.0%	100.0%	35.8%	30.8%	17.9%	15.5%	364	365
Custom	Heating, Cooling	79.7%	10.7%	58.4%	33.7%	3.5%	4.5%	37	70
Air Sealing	Heating, Cooling	79.7%	10.7%	58.4%	33.7%	3.5%	4.5%	37	70
Insulation	Heating, Cooling	79.7%	10.7%	58.4%	33.7%	3.5%	4.5%	37	70
Ductless Heat Pump	Heating, Cooling	79.7%	10.7%	58.4%	33.7%	3.5%	4.5%	37	71
Ductless Heat Pump Retrofit – Non- Electric Baseline	Heating, Cooling	79.6%	10.2%	58.4%	33.8%	3.6%	4.1%	37	72
Ductless Heat Pump Retrofit – Electric Baseline	Heating, Cooling	83.7%	10.2%	58.7%	32.5%	3.9%	4.8%	37	72
Central Air Source Heat Pump (Ducted)	Heating	54.8%	10.7%	59.3%	29.3%	4.6%	6.8%	37	73
Central Geothermal (Ground Source) Heat Pump	Heating	79.6%	10.2%	58.7%	34.0%	3.2%	4.0%	37	74
Direct Install CFL Bulb	Lighting	18.4%	6.8%	44.3%	32.0%	12.8%	10.9%	37	75
Low Flow Kitchen Aerator	Domestic Hot Water	1.2%	0.8%	39.7%	26.8%	20.3%	13.1%	36	59
Low Flow Bathroom Aerator	Domestic Hot Water	0.4%	0.3%	39.7%	26.8%	20.3%	13.1%	36	59
Low Flow Showerhead	Domestic Hot Water	0.8%	0.5%	35.5%	31.1%	18.1%	15.3%	36	59
DHW Temperature Turn-Down	Domestic Hot Water	13.3%	9.6%	40.9%	25.7%	20.9%	12.5%	36	59
DHW Pipe Insulation	Domestic Hot Water	100.0%	100.0%	30.4%	36.2%	15.6%	17.9%	36	58
DHW Wrap	Domestic Hot Water	100.0%	100.0%	30.4%	36.2%	15.6%	17.9%	36	58
Low Income Multifamily Gas Heat,									

*Coincidence Factor and Energy Period Factors are not applicable for fossil fuel measures, as avoided costs for fossil fuels do not account for time-of-use.

NA

NA

NA

NA

NA

NA

NA

NA

³⁶⁴ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

Heating

³⁶⁶ Assumed to be the same as refrigerator measure

Furnaces and Boilers (NC/Retrofit), Pellet/Wood Stove, Pellet Boiler.

On Demand Natural Gas Water

Heater*

³⁶⁷ RLW Analytics, Coincidence Factor Study, Residential Room Air Conditioners, June 2008. Values are based on TMY2 weather for Portland, Maine.

³⁶⁸ Values developed based on annual hours of use and equipment operating assumptions.

³⁷¹ Values developed based on the bin analysis calculations for DHP savings using typical annual hours in each weather bin during each demand and energy period.

³⁶³ Composite Energy Period Factors for Residential (96%) and Commercial (4%). Residential energy period allocations are developed based on load shape data collected during The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012. Prepared for Efficiency Maine Trust. Commercial energy period allocations from Central Maine Power, non-residential load profile for 3/1/08-2/28/09.

³⁶⁵ Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

³⁶⁹ Values developed based on residential hot water usage profiles from: Aquacraft, Inc., The End Uses of Hot Water in Single Family Homes from Flow Trace Analysis. ³⁷⁰ Assume same factors as Ductless Heat Pump.

³⁷² Values developed based on the bin analysis calculations for DHP retrofit savings using typical annual hours in each weather bin during each demand and energy

period. ³⁷³ Factors for the Central ASHP measure were assumed to be identical to the factors of the Ductless Heat Pump (lost opportunity) measure because of the similarity between the two measures.

³⁷⁴ Factors for the Central GSHP measure were assumed to be identical to the factors of the Ductless Heat Pump Retrofit measure because of the similarity between the two measures.

³⁷⁵ Assumed to be the same as Residential Retail Lighting CFL Bulb measure

Appendix C: Retail Lighting Assumptions and EISA

A number of critical assumptions for the calculation of annual and lifetime savings and cost effectiveness for retail lighting measures will change throughout this decade primarily as a result of the Energy Independence and Security Act of 2007 (EISA) and new product development in the market. The following tables outline key assumptions and calculations.

Bulb Type	Lumen Bin	Proportion of Total Bulb Sales	Average CFL Wattage	Baseline Wattage (2011)
Standard	3301-4815	0.01%	55.00	200
Standard	2601-3300	0.09%	41.59	150
Standard	1490-2600	8.46%	24.51	100
Standard	1050-1489	3.35%	19.52	75
Standard	750-1049	78.72%	13.41	60
Standard	310-749	4.35%	9.51	40
Standard	0-309	0.02%	5.00	25
Specialty	3301-4815	0.01%	65.00	200
Specialty	1490-2600	0.65%	26.47	100
Specialty	1050-1489	0.23%	19.61	75
Specialty	750-1049	2.27%	14.50	60
Specialty	310-749	0.72%	10.08	40
Giveaway	1490-2600	1.13%	23.00	100
Weighted Average	N/A	100%	14.62	63.71

Table C-1. Retail Lighting Program: Baseline Wattages and CFL Wattages

Table C-2 describes the adjustments to baseline starting in 2012 due to the changing maximum wattages specified in EISA.

Lumen Range	Assumed Original Baseline	New Maximum Wattage	Effective Date
310-749	40	29	2014
750-1049	60	43	2014
1050-1489	75	53	2013
1490-2600	100	72	2012

Table C-2. EISA Adjustments by Lumen Range (Evaluation, Table 25)³⁷⁶

Table C-4 shows the changes in the weighted average baseline wattage resulting as the EISA requirements becoming effective for 2011 through 2014. Weighted average wattage for CFL and LED bulbs are presented for 2011 and 2014 along with the resulting percentage change in the savings compared to 2011 based on EISA impacts.

Year	Program Year (7/1/(YY-1)- 6/30/YY)	EISA Adjusted Weighted Average Baseline Wattage	Weighted Average CFL Wattage	EISA% _{CFL}	Weighted Average LED Wattage	EISA% _{LED}
2011	2012	63.71	14.62	100%	13	100%
2012	2013	61.03	14.62	94.5%	13	94.7%
2013	2014	60.29	14.62	93.0%	13	93.3%
2014	2015	46.43	14.62	64.8%	12	66.6%

Table C-3. EISA Adjusted Weighted Average Baseline Wattage by Year

³⁷⁶ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, Table 25.

Appendix D: Standard Assumptions for Maine

Heating Fuel	Percentage of Homes	Distribution Excluding Coal and Other	
Natural Gas	9%	9%	
Oil	65%	66%	
Wood	8%	8%	
Propane	6%	6%	
Kerosene	6%	6%	
Pellet	4%	4%	
Electricity	0.80%	0.80%	
Coal	0.40%	n/a	
Other	0.30%	n/a	

Table D-1. Distribution of Heating Fuel for Maine Residential Customers

Table D-2. Minimum Efficiency Requirements for Furnaces and Boilers³⁷⁷

Equipment Category	Equipment Type	Federal Code Minimum (AFUE)		
	Non-weatherized gas furnaces (not including mobile home furnaces)	80%		
	Mobile home gas furnaces	80%		
Furnaces	Non-weatherized oil-fired furnaces (not including mobile home furnaces)*	83%		
T diffices	Mobile home oil-fired furnaces	75%		
	Weatherized gas furnaces	81%		
	Weatherized oil-fired furnaces	78%		
	Electric furnaces	78%		
	Gas-fired hot water boiler	82%		
	Gas-fired steam boiler	80%		
Boilers	Oil-fired hot water boiler*	84%		
	Oil-fired steam boiler	82%		
	Electric hot water boiler	None		
* For the TRM, we use the assumptions for non-weatherized oil-fired furnaces and boilers to represent the typical efficiency for all heating systems.				

³⁷⁷ Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-</u>

idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10

Appendix E: Supplementary Information for Ductless Heat Pumps

Outside Air	Heating Seasonal Performance Factor [BTU/Watt-hr]			
Temperature (DB) [°F]	Efficient DHP Rated HSPF = 12	Baseline DHP Rated HSPF = 8.2 ³⁷⁹		
65	12.8	9.5		
63	12.6	9.4		
61	12.5	9.3		
59	12.3	9.2		
57	12.2	9.1		
55	12.0	8.9		
53	11.8	8.8		
51	11.7	8.7		
49	11.5	8.6		
47	11.4	8.5		
45	11.2	8.4		
43	11.1	8.3		
41	10.9	8.1		
39	10.8	8.0		
37	10.6	7.9		
35	10.5	7.8		
33	10.3	7.7		
31	10.1	7.6		
29	10.0	7.4		
27	9.8	7.3		
25	9.7	7.2		
23	9.5	7.1		
21	9.4	7.0		
19	9.2	6.9		
17	9.1	6.8		
15	8.9	6.6		
13	8.8	6.5		
11	8.6	6.4		
9	8.4	6.3		
7	8.3	6.2		
5	8.1	6.1		
3	8.0	6.0		
1	7.8	5.8		
-1	7.7	5.7		
-3	7.5	5.6		
-5	7.4	5.5		
-7	7.2	5.4		
-9	7.1	5.3		
-11	6.9	5.1		

 Table E-1. DHP Heating Performance at Varying Outside Air Temperatures

³⁷⁸A linear regression analysis of eligible DHP units' heating performance was performed using Coefficients of Performance values specified at select outside air temperatures (based on data provided to EMT by a manufacturer for five eligible DHP units). The slopes and intercepts resulting from separate linear regression analyses of five different models were averaged to define HSPF as a function of outside air temperature. The average R² value for the five linear regression analyses was ~0.93. ³⁷⁹ Minimum efficiency requirement in Federal Energy Codes for units manufactured on or after January 1, 2015.

	Port	Portland		igor	Caribou	
Temp. Bin (DB) [°F]	Efficient DHP Electric Consumption [kWh]	Baseline DHP Electric Consumption [kWh]	Efficient DHP Electric Consumption [kWh]	Baseline DHP Electric Consumption [kWh]	Efficient DHP Electric Consumption [kWh]	Baseline DHP Electric Consumption [kWh]
92+	-	-	-	-	-	-
90 to 92	-	-	-	-	-	-
88 to 90	-	-	-	-	-	-
86 to 88	-	-	-	-	-	-
84 to 86	-	-	-	-	-	-
82 to 84	-	-	-	-	-	-
80 to 82	-	-	-	-	-	-
78 to 80	-	-	-	-	-	-
76 to 78	-	-	-	-	-	-
74 to 76	-	-	-	-	-	-
72 to 74	-	-	-	-	-	-
70 to 72	-	-	-	-	-	-
68 to 70	-	-	-	-	-	-
66 to 68	-	-	-	-	-	-
64 to 66	11	14	10	13	9	12
62 to 64	23	31	19	26	19	26
60 to 62	33	44	29	38	32	42
58 to 60	22	30	24	32	21	29
56 to 58	55	74	61	82	50	67
54 to 56	68	92	74	99	62	83
52 to 54	81	109	84	113	76	102
50 to 52	187	250	145	195	157	210
48 to 50	124	166	118	158	102	137
46 to 48	149	199	135	181	115	155
44 to 46	140	188	162	218	153	205
42 to 44	111	149	170	228	170	229
40 to 42	54	73	86	116	89	120
38 to 40	147	197	188	253	169	226
36 to 38	211	283	245	329	185	248
34 to 36	226	303	252	339	207	278
32 to 34	407	546	378	507	342	458
30 to 32	264	355	263	353	243	327
28 to 30	274	368	236	317	218	293
26 to 28	243	325	188	252	233	312
24 to 26	219	294	206	277	202	271
22 to 24	115	154	106	143	116	155
20 to 22	235	315	214	287	277	371
18 to 20	231	310	198	266	241	324
16 to 18	130	174	167	224	222	298
14 to 16	173	232	234	314	322	432
12 to 14	113	152	105	141	193	259
10 to 12	67	90	76	102	195	261
8 to 10	56	76	84	112	152	203
6 to 8	49	66	53	71	114	152
4 to 6	20	26	27	36	68	91
2 to 4	30	40	30	40	126	169
0 to 2	14	19	39	52	72	97
-2 to 0	14	18	34	45	55	74
-4 to -2	16	21	17	23	86	116
-6 to -4	4	5	13	17	40	54
-8 to -6	-	0	3	4	34	46
-10 to -8	1	1	4	6	17	23
-12 to -10	0	0	4	6	5	6

Table E-2. Electric Consumption by Baseline and Efficient Ductless Heat Pumps³⁸⁰

³⁸⁰ Baseline and Efficient DHP consumptions were calculated in accordance with the assumptions specified in Page 38: Ductless Heat Pump. Calculation was performed using a bin analysis of TMY3 weather data in MS Excel. Used for Ductless Heat Pump measure.

Town Die (DD)	TRAV Annual	Total Heating		Heating Energy Consumption Displaced	
Temp. Bin (DB)	TMY Annual Hours	Load Displaced by	Efficient DHP Electric	Baseline Electric	Baseline Ducted Fuel-Fired
[°F]	Hours	DHP [BTU]	Consumption [kWh]	Baseboard [kWh]	System [MMBTU]
92+	2	-	-	-	-
90 to 92	6	-	-	-	-
88 to 90	13	-	-	-	-
86 to 88	31	-	-	-	-
84 to 86	32	-	-	-	-
82 to 84	51	-	-	-	-
80 to 82	56	-	-	-	-
78 to 80	87	-	-	-	-
76 to 78	43	-	-	-	-
74 to 76	119	-	-	-	-
72 to 74	154	-	-	-	-
70 to 72	201	-	-	-	-
68 to 70	339	-	-	-	-
66 to 68	263	-	-	-	-
64 to 66	281	134,624	11	39	0.239
62 to 64	306	293,201	23	86	0.521
60 to 62	284	408,182	33	120	0.726
58 to 60	143	274,038	22	80	0.487
56 to 58	280	670,722	55	197	1.192
54 to 56	285	819,239	68	240	1.456
52 to 54	285	959,133	81	240	1.430
50 to 52	569	2,180,805	187	639	3.877
48 to 50	332		187	420	2.545
48 to 30 46 to 48	352	1,431,513	149	420	3.007
40 to 48 44 to 46	299	1,691,178	149	490	2.801
	299	1,575,718		361	
42 to 44		1,230,296	111		2.187
40 to 42	95	591,673	54	173	1.052
38 to 40	236	1,582,904	147	464	2.814
36 to 38	311	2,234,942	211	655	3.973
34 to 36	308	2,360,942	226	692	4.197
32 to 34	515	4,194,409	407	1,229	7.457
30 to 32	311	2,681,931	264	786	4.768
28 to 30	301	2,739,900	274	803	4.871
26 to 28	249	2,385,855	243	699	4.242
24 to 26	211	2,122,836	219	622	3.774
22 to 24	104	1,096,152	115	321	1.949
20 to 22	200	2,203,802	235	646	3.918
18 to 20	196	2,130,157	231	624	3.787
16 to 18	114	1,175,376	130	344	2.090
14 to 16	158	1,540,893	173	452	2.739
12 to 14	108	993,023	113	291	1.765
10 to 12	67	578,667	67	170	1.029
8 to 10	59	476,661	56	140	0.847
6 to 8	54	406,143	49	119	0.722
4 to 6	23	160,157	20	47	0.285
2 to 4	37	237,004	30	69	0.421
0 to 2	19	111,106	14	33	0.198
-2 to 0	20	105,797	14	31	0.188
-4 to -2	25	118,300	16	35	0.210
-6 to -4	7	29,219	4	9	0.052
-8 to -6	-	-	-	-	-
-10 to -8	2	6,117	1	2	0.011
-12 to -10	1	2,501	0	1	0.004

Table E-3. Heating Load Displaced by Ductless Heat Pump Retrofit³⁸¹

³⁸¹ Heating load displaced by the Ductless Heat Pump was calculated in accordance with the assumptions specified in Page 54: Ductless Heat Pump Retrofit. Calculation was performed using a bin analysis of TMY3 weather data in MS Excel. Used for Ductless Heat Pump Retrofit measure.