

Multifamily

Technical Reference Manual

Version 2016.1

Effective Date: 1 July 2015

Efficiency Maine Trust 168 Capitol Street Augusta, ME 04330 <u>efficiencymaine.com</u>

Table of Contents

TABLE OF CONTENTS	2
TRM CHANGE LOG	8
MULTIFAMILY EFFICIENCY	11
Prescriptive Lighting: Lighting Fixtures – Multifamily (Retrofit), Code ML10, ML10.1, ML15, ML15.1, ML25, ML30, ML30.1, ML32	,
ML32.1, ML35, MS20, MS50, MS10, MS12, MS14, MS22, MS8, MX10	12
Prescriptive Lighting: Lighting Fixtures – Multifamily (New Construction), Code ML16, ML31, ML33, ML35, MS11, MS13, MS15,	
MS21, MS23, MS51	14
Prescriptive Lighting: Lighting Controls – Multifamily, Code ML70, ML71	16
Multifamily Air Sealing	18
Multifamily Attic/Roof Insulation	20
Multifamily Wall Insulation	21
Multifamily Floor Insulation	22
Multifamily Boiler or Furnace Retrofit/Replacement	24
Multifamily Boiler Control	26
Programmable Thermostats	27
SMART PUMP WITH ECM MOTOR	29
DUCTLESS HEAT PUMP	30
Ductless Heat Pump Retrofit – Low Income Multifamily	32
HIGH EFFICIENCY WATER HEATER	35
LOW-FLOW FAUCET AERATOR	38
LOW-FLOW SHOWERHEADS	40
MULTIFAMILY CUSTOM FAST TRACK	42
MULTIFAMILY CUSTOM MODELING	43
APPENDIX A: GLOSSARY	44
APPENDIX B: LOAD SHAPES AND COINCIDENCE FACTORS	48
APPENDIX C: CARBON DIOXIDE EMISSION FACTORS	51
APPENDIX D: SUPPORTING TABLES FOR MULTIFAMILY MEASURES	53
APPENDIX E: LIGHTING INSTALLED AND BASELINE FIXTURE RATED WATTAGE TABLES AND BASELINE LIGHTING POWER DENSIT (LPD)	ΓY 72
APPENDIX F: PRESCRIPTIVE LIGHTING MEASURE COST	78
APPENDIX G: AVERAGE ANNUAL LIGHTING OPERATING HOURS AND OTHER LOOKUP TABLES	82
APPENDIX H: STANDARD ASSUMPTIONS FOR MAINE	84
APPENDIX I: CUSTOM PROJECTS – PROCESS DOCUMENTATION	86

Introduction

PURPOSE

The Efficiency Maine Trust Residential/Retail, Commercial and Multifamily Technical Reference Manuals (TRMs) provide documentation for the Trust's calculation of energy and demand savings from energy efficiency measures. Each TRM serves as a central repository and common point of reference for the methods, formulas, assumptions and sources that are used to estimate savings from energy efficiency measures, and provides a common platform for analyzing energy savings across measures and programs. The importance of the TRM is derived from the importance of energy and demand savings calculations, which are at the foundation of the Trust's program planning and management, cost-effectiveness analysis, program evaluation, Annual Report and ISO-NE Forward Capacity Market participation.

GENERAL FORMAT

The TRM is organized by end use and then by measure category, where a measure category may include one or more measures. Each measure category is presented in its own section as a measure characterization, which follows a standard format. The measure characterization includes: a measure overview; energy and demand savings algorithms; baseline assumptions; deemed parameter values or instructions for inputs to savings algorithms, measure life and measure costs; and impact factors for calculating adjusted gross savings and net savings. When there is a set of common values across measures, summary tables are provided at the end of the relevant section or in an appendix.

Where deemed savings values are specified, the Trust uses integer values when reporting in units of kWh, one decimal place when reporting in units of MMBtu, and three decimal places for all demand (kW) values.

GUIDANCE & COMMON ASSUMPTIONS

In using the Trust's TRMs, it is helpful to note the following:

- Gross savings: Algorithms are specified for gross savings. To calculate adjusted gross savings or net savings, impact factors that account verified measure performance (adjusted gross) and attribution (net) must be applied. The formulas used to calculate adjusted gross and net savings are described below.
- **Annual savings**: Algorithms are specified for *annual* savings. Unless otherwise noted, annual savings are assumed to be realized for each year of the measure life.
- **Unit savings**: Algorithms are specified for *per unit savings*. The Trust's program databases track and record the number of units delivered through the program.
- *Meter-level savings:* Savings are assumed to be the savings that occur at the customer's meter (or point of use for non-electric savings); line losses are not included in these calculations.
- Non-Electric Savings: When applicable, savings are counted for natural gas, oil, propane, kerosene, wood and/or water. The deemed unit savings, algorithms and assumptions for these non-electric impacts are described in the measure characterizations only for those measures for which those savings are counted. If a non-electric impact is not described for a measure, it can be assumed that no non-electric impacts are counted for that measure.
- In-Service Rate (ISR): The in-service rate represents the percentage of program units which are installed or implemented. Unless otherwise stated in the measure-specific sections in this TRM, the ISR is set to 100% for the following reasons:
 - In the commercial sector, it is uncommon for customers to purchase equipment and not immediately install or use it.

- The Trust's non-retail programs include some level of verification of the measure purchase and/or installation. These verification procedures ensure that projects and savings are counted only for measures which are implemented.
- The effects of non-implemented units may be identified in the program impact evaluation and accounted for in the energy and demand realization rates.
- Direct install measures result in 100% installation rates.
- **Coincidence factors (CF)**: Coincidence factors are provided for the summer and winter on-peak periods as defined by the ISO-New England for the Forward Capacity Market ("FCM"), and are calculated consistently with the FCM methodology. Electric demand reduction during the ISO New England peak periods is defined as follows:
 - **Summer On-Peak**: average demand reduction from 1:00 to 5:00 PM on non-holiday weekdays in June, July, and August
 - Winter On-Peak: average demand reduction from 5:00 to 7:00 PM on non-holiday weekdays in December and January
- Life: Life refers to the effective useful life of the measure. It represents the equivalent number of years the savings are expected to be realized. Lifetime savings = annual savings * life. Measure life takes one or more of the following aspects into consideration: 1) projected equipment life, 2) documented equipment warranty, 3) measure persistence¹, and 4) savings persistence². Life is set to represent a conservative estimate of the aggregate life of all measures of that type installed and not the characterization of the life of a single, specific installed measure.
- **Deemed savings value vs. deemed savings algorithm**: For some measures, deemed savings values are provided representing average savings per unit for the measure. The deemed savings value may be based directly on the results from an evaluation or other research study, or may be based on a set of deemed input parameters applied to the stated energy and demand savings algorithms. For other measures, deemed values are provided for only some of the parameters in the algorithm and actual values for a given measure are required to calculate savings. In these cases, project-specific (or "Actual") data recorded in the relevant program tracking database is used in combination with the TRM deemed parameters to compute savings.
- **Project-specific ("Actual") data for Parameter Inputs**: The savings methods for some measures specify "Actual" data for at least one of the input parameters. Actual data refers to values that are specific to the project. Unless otherwise stated, these actual project data should be collected and documented on the project application forms. For some measures, the TRM provides alternative values if the actual data is unknown.
- **Data Sources for Deemed Parameter Inputs**: Wherever possible, deemed parameter values and assumptions are based on Maine-specific research and data. When such data are not available, the TRM relies on relevant data sources from other areas within the U.S; in doing so, data sources from neighboring states and regions are prioritized. In some cases, engineering judgment and scaling for regional differences are used.

¹ Measure persistence is a quantification of how long the measure will remain in place. Causes of reduced measure persistence include any activity that removes the measure or eliminates the savings such as equipment upgrade, refurbishment or renovation of the building, closure of a business, override of efficiency controls. ² Savings persistence is a quantification of how long the defined savings will remain. Causes of reduced savings persistence include a change to the baseline over the useful life of the measure so that future savings are less than first year savings and changes in usage behavior over time.

Decision type: The decision type describes the underlying scenario that is assumed for the savings calculation of
a given measure. The decision type has implications for the baseline efficiency case and the measure cost
assumptions as shown below.³ For each energy efficiency measure, the TRM identifies the relevant decision
type, or types, corresponding to the scenarios in which the given measure may be implemented.

Decision Type	Scenario	Baseline	Measure Cost
New Construction	Customer is in the market to purchase new equipment for a new construction or new capacity project or as part of a planned renovation or to add controls to improve the performance of new equipment	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Replace on Burnout	Customer is in the market to purchase new equipment to replace existing equipment that has worn out or otherwise needs replacing	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Retrofit	Customer's existing equipment is in working order and has remaining useful life or is adding controls to improve the performance of operating equipment in an existing facility.	Existing equipment or conditions	Full measure cost: cost of the high-efficiency equipment (including installation)

- *Efficiency standards:* The TRM anticipates the effects of changes in efficiency standards for some measures, including shifts in the baseline for CFL and LED bulbs due to changes in Federal Standards for lighting products under the Energy Independence & Security Act of 2007 (EISA).
- **TRM Updates**: The TRMs are reviewed and updated annually, or more frequently if needed, to reflect new information obtained through research and evaluation studies, changes in program offerings (measures) and shifts in technology and baselines. Annual updates to the TRM are published as a new version (Version YYYY.1) with a specific effective date. Inter-year updates to the TRM are published as iterations to the version year (Version YYYY.x) with changes and effective date indicated.

SAVINGS FORMULAS

The formulas and inputs used to calculate the deemed gross annual energy ($\Delta kWh/yr$) and gross demand (ΔkW) savings for each measure are described in the measure sections. The formulas used to calculate adjusted gross savings, on-peak demand savings, and lifetime savings are described below:

Adjusted Gross Savings

Adjusted gross savings represent the total energy and demand savings achieved by measures implemented through the Trust's programs. The adjusted gross savings values are calculated by applying various evaluation parameters to the gross annual energy and demand savings:

³ Table adapted from National Action Plan for Energy Efficiency (2008). Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics, Inc. and Regulatory Assistance Project. <<u>http://www.epa.gov/eeactionplan</u>>

Adjusted Gross Annual kWh = Δ kWh/yr × ISR × RR_E

Adjusted Gross Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times Measure Life$

Adjusted Gross Annual MMBtu⁴ = Δ MMBtu/yr × ISR × RR_E

Adjusted Gross Lifetime MMBtu⁴ = Δ MMBtu/yr × ISR × RR_E × Measure Life

Adjusted Gross Summer On-Peak kW = $\Delta kW \times ISR \times RR_{D} \times CF_{S}$

Adjusted Gross Winter On-Peak kW = $\Delta kW \times ISR \times RR_{D} \times CF_{W}$

The Adjusted Gross Summer On-Peak kW value is equivalent to the the Demand Reduction Value reported to the ISO-NE Forward Capacity Market.

Net Savings

Net Savings represent the total realized energy and demand savings that are attributable to the Trust's programs. These net savings are calculated by applying the net-to-gross (NTG) factors such as free-ridership and spillover to the adjusted gross savings.

Net Annual kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO)$

Net Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO) \times Measure Life$

Net Summer On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_S \times (1 - FR + SO)$

Net Winter On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_W \times (1 - FR + SO)$

*The parameter (1 - FR + SO) may be replaced with the net-to-gross (NTG) ratio.

SAVINGS CALCULATIONS

The actual calculation of energy efficiency savings, pursuant to the algorithms and assumptions documented in the TRM, occurs in the Trust's program tracking databases. In 2012, the Trust initiated a significant effort to upgrade and transform its existing program-specific databases into a comprehensive, unified database system that supports multiple programs with standardized internal processes, features and quality. This initiative builds on the foundation of the successful Efficiency Maine Reporting and Tracking (effRT) database system that historically supported the Business Programs to create a new multi-program database system, effRT 2.0. As part of this effort, the Trust is mapping the TRM deemed values and algorithms into effRT, and establishing processes for updates to effRT to coincide with TRM updates.

As of January 1, 14, the Trust added adjustment factors for the in-service rate (ISR) and the evaluated realization rate (RR) to the formulas used to calculate the demand reduction value (DRV) for Forward Capacity Market (FCM) monthly reporting. Results using these two additional factors are referred to as *Adjusted Gross Savings* in the effRT report.

⁴ In this document and other reporting documents, fossil fuel savings are reporting in unit of MMBtu. In the tracking data base (effRT), natural gas savings are calculated in units of therms and then must be converted to MMBtu.

TRM Change Log

Change Type	TRM Section	Description	Effective Date	effRT update
Revision	All	Incorporation of Multifamily Efficiency Program measures into standard TRM format	7/1/2014	Y
Revision	Appendix B	Coincidence Factors and Energy Period Factors for air sealing, insulation and programmable thermostat updated to reflect residential ductless heat pump usage profile.	7/1/2014	Y
Other	Prescriptive Lighting: Lighting Fixtures – Multifamily (Retrofit)	Moved Multifamily Lighting measures from Commercial TRM to Multifamily TRM	1/1/2015	N
New	Prescriptive Lighting: Lighting Fixtures – Multifamily (New Construction)	Leveraged Commercial new construction lighting measures for multifamily new construction	1/1/2015	Y
Other	Introduction	Updated TRM Update section. Inter-year updates will be released as iterations of the complete document.	11/30/2014	N
Revision	Multifamily Boiler or Furnace, Programmable Thermostats, High Efficiency Water Heater	Added New Construction to project type	1/1/2015	Y
New	Ductless Heat Pump New Construction	New measure added for multifamily for ductless heat pumps for new construction and gut rehabs	1/1/2015	Y
Correction	Ductless Heat Pump Retrofit	Adjusted modeling to account for multifamily unit annual heat loss. This correction is applied retroactively to 1 July 2014.	7/1/2014	Y
Revision	Prescriptive Lighting	Updated interactive effect factors	7/1/2015	Y
Correction	Insulation Measures	Added conversion factor to algorithm to convert from Therms to MMBTU. EffRT already reflected the correct units	7/1/2015	N
Revision	Multiple	Updated Btu per Wh conversion factor from 3.413 to 3.412	7/1/2015	Y

Change Type	TRM Section	Description	Effective Date	effRT update
Revision	Multiple	Updated Btu per kWh conversion factor from 3413 to 3412	7/1/2015	Y
Revision	Ductless Heat Pump	Updated to reflect refined assumptions and modeling	7/1/2015	Y
Other	Ductless Heat Pump Retrofit	Measure removed	7/1/2015	Y
New	Ductless Heat Pump Retrofit Low Income	New measure added for income eligible multifamily ductless heat pump due to operational differences observed during Low Income Weatherization Evaluation	7/1/2015	Y
Revision	Low Flow Faucet Aerator, Low Flow Showerhead	Updated assumptions and corrected calculation	7/1/2015	Y
Revision	Appendix B	Updated coincidence factors and energy period factors for new and modified measures	7/1/2015	Y
Other	Appendix: Carbon Dioxide Emission Factors	Added carbon dioxide emission factors table	7/1/2015	N
Revision	Prescriptive Lighting Measure Cost	Lighting measure costs updated	7/1/2015	Y
Revision	S11	New wattage sub-division added	7/1/2015	Y

Correction: indicates a correction to an existing error in the previous TRM.

New: indicates a measure that was not included in the previous TRM

Revision: indicates a revision to the savings or costs of an existing measure

Other: indicates a change to an existing measure or existing text and that does not affect savings or cost calculation

Multifamily Efficiency

Prescriptive Lighting: Lighting Fixtures – Multifamily (Retrofit), Code ML10, ML10.1, ML15, ML15.1, ML25,											
ML30, ML30.1, ML32, ML32.1, ML35, MS20, MS50, MS10, MS12, MS14, MS22, MS8, MX10											
Last Revised Date	7/1/2015										
MEASURE OVERVIEW	MEASURE OVERVIEW										
Description	This measure	This measure involves the replacement of existing inefficient lighting fixtures with new high-									
	efficiency lig	hting fixtures i	n the common	areas, individ	ual units, and	exterior space	s for				
	multifamily b	ouildings.									
Primary Energy	Electric										
Impact											
Sector	Multifamily										
Program(s)	Multifamily E	Efficiency Prog	ram								
End-Use	Lighting										
Project Type	Retrofit										
GROSS ENERGY SAVIN	GS ALGORITHI	MS (UNIT SAV	INGS)								
Demand Savings	$\Delta kW = (Qty_{BA})$	_{se} x Watts _{BASE} -	- Qty _{EE} x Watts	_{EE} / 1000) x W	HF _d						
Annual Energy	$\Delta kWh/yr = (0)$	Qty _{BASE} x Watts	S _{BASE} – Qty _{EE} x V	Vatts _{EE} / 1000)	x HoursYr x W	/HF _{e,cool}					
Savings	Δ MMBtu/yr	= -(Qty _{BASE} x W	atts _{BASE} – Qty _E	_E x Watts _{EE}) / 1	.000 x HoursYr	x WHF _{e,heat}	_				
Definitions	Unit =	 Lighting fixtu 	re upgrade me	easure							
	Qty _{BASE} =	 Quantity of b 	aseline fixture	S							
	Qty _{EE} =	 Quantity of in 	nstalled fixture	S							
	Watts _{BASE} =	= Watts of base	eline fixture (b	ased on the sp	ecified existin	g fixture type)	(Watts)				
	Watts _{EE} =	Watts of Ene	rgy efficient fix	cture (based o	n the specified	l installed fixtu	ıre type)				
		(Watts)									
	HoursYr =	Annual opera	ating hours (hr	s/yr)							
	WHF _d =	= Waste heat f	actor for dema	and to account	for cooling sa	vings from eff	icient				
		lighting⁵									
	WHF _{e,cool} =	= Waste heat f	actor for energ	gy to account f	or cooling savi	ings from effic	ient lighting⁵				
	WHF _{e,heat} =	= Waste heat f	actor for energ	gy to account f	or increased h	eating load fro	om efficient				
		lighting⁵									
	1000 =	Conversion: 1	1000 Watts pe	r kW							
EFFICIENCY ASSUMPTIC	ONS						_				
Baseline	Existing incar	ndescent or flu	orescent light	fixtures							
High Efficiency	High efficien	cy CFL or LED f	ixtures								
PARAMETER VALUES	I	I	I	I	I	I	1				
Measure/Type	Qty _{BASE}	Qty _{BASE} Watts _{BASE} Qty _{EE} Watts _{EE} HoursYr Life (yrs) Cost (\$)									
Retrofit	Actual	ActualTable 21 ⁶ ActualTable 19 ⁷ Table 24 ⁸ 13 ⁹ Table 23 ¹⁰									
Measure/Type	WHF _d	WHF _{e,cool}	WHF _{e,heat}								
Retrofit	1.067 ¹¹	1.198 ¹¹	0.00246 ¹¹								

¹⁰ See Appendix F.

⁵ Waste heat factors are only applied to interior lighting measures.

⁶See Appendix E. The baseline fixture wattage is based on the specified baseline fixture type.

⁷ See Appendix E. The installed fixture wattage is based on the specified installed fixture type.

⁸ See Appendix G. The annual hours of use are based on the specified space type.

⁹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 *Measure Life Study Report* prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Life Study Report Prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report Prepared for The Massachusetts Life Study

¹¹ Analysis performed by Cadmus June 2015 based on 2015 NY TRM, Appendix D. HVAC Interactive Effects Multipliers.

Prescriptive Lighting: Lighting Fixtures – Multifamily (Retrofit), Code ML10, ML10.1, ML15, ML15.1, ML25,											
ML30, ML30.1, ML32, ML32.1, ML35, MS20, MS50, MS10, MS12, MS14, MS22, MS8, MX10											
IMPACT FACTORS	IMPACT FACTORS										
Program	ISR	RR _E	RR _D	CFs	CFw	FR	SO				
Multifamily Efficiency	100%	107% ¹²	100% ¹³	Table 2 ¹⁴	Table 2 ¹⁴	11.0% ¹⁵	1.0%15				

¹² Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; realization rates are based on weighted average results from the evaluation, adjusted for each measure group and program tracking changes. See workbook: MEP_EvaluationAdjustments.

¹³ Demand impacts have not been evaluated for the multifamily program. Until the next program evaluation, EMT assumes 100% realization rate.

 ¹⁴ See Appendix B: Load Shapes and Coincidence Factors
 ¹⁵ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 4-5.

Prescriptive Light MS11, MS	ting: Lighting Fixtures – Multifamily (New Construction), Code ML16, ML31, ML33, ML35, S13, MS15, MS21, MS23, MS51									
Last Revised Date	7/1/2015									
MEASURE OVERVI	EW									
Description	This measure involves the purchase and installation of high-efficiency lighting fixtures instead of new standard efficiency fixtures.									
Primary Energy Impact	Electric									
Sector	commercial/Industrial									
Program(s)	Multifamily Efficiency Program									
End-Use	Lighting									
Project Type	New Construction, Replace on Burnout									
GROSS ENERGY SA	VINGS ALGORITHMS (UNIT SAVINGS)									
Demand Savings	For lighting power density based new construction/ROB measures (ML16, ML31, ML33, ML35, MS15, MS21, MS51): ¹⁶									
	$\Delta KW = (LPD_{BASE} \times AIEd = Q(Y_{EE} \times Walls_{EE}) / 1000 \times WHP_d$									
	For wattage reduction based new construction/ROB measures (MS11, MS13, MS23): ¹⁶ $\Delta kW = Qty_{EE} \times SAVE_{EE} / 1000 \times WHF_{d}$									
Annual Energy Savings	For lighting power density based new construction/ROB measures (ML16, ML31, ML33, ML35, MS15, MS21, MS51): ¹⁶									
	$\Delta kWh/yr = (LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) / 1000 x HoursYr x WHF_{e,cool}$									
	Δ MMBtu/yr = -(LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1000 x HoursYr x WHF _{e,heat}									
	For wattage reduction based new construction/ROB measures (MS11, MS13, MS23): ¹⁶									
	$\Delta kWh/yr = Qty_{EE} \times SAVE_{EE} / 1000 \times HoursYr \times WHF_{e,cool}$									
Definitions	Unit = Lighting fixture upgrade measure									
	Qty _{EE} = Quantity of energy efficient fixtures									
	Watts _{EE} = Watts of energy efficient fixture (based on the specified installed fixture type) (Watts)									
	SAVE _{EE} = Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)									
	LPD_{BASE} = Baseline maximum lighting power density (LPD) for space type (Watts/ft ²)									
	Area = Area of the building or space associated with the design LPD_{BASE} value (ft ²)									
	HoursYr = Annual hours of equipment operation (hrs/year)									
	WHF _d = Waste heat factor for demand to account for cooling savings from efficient lighting ¹⁷									
	WHF _{e,cool} = Waste heat factor for energy to account for cooling savings from efficient lighting ¹⁷									
	WHF _{e,heat} = Waste heat factor for energy to account for increased heating load from efficient lighting ¹⁷									
	1000= Conversion: 1000 Watts per kW									
EFFICIENCY ASSUM	NPTIONS									
Baseline	The baseline is represented by building code or standard design practice for the building or space									
Efficiency	type.									
High Efficiency	High-efficiency lighting system that exceeds building code.									

¹⁶ The LPD baseline approach is not used for parking lot, wall pack, spot, track or task lighting. For those measures, the savings are based on average per fixture wattage reduction. ¹⁷ Waste heat factors are only applied to interior lighting measures.

Prescriptive Lighting: Lighting Fixtures – Multifamily (New Construction), Code ML16, ML31, ML33, ML35, MS11, MS13, MS15, MS21, MS23, MS51

PARAMETER VALUES										
Measure/Type	Qty _{EE}	Watts	EE	SAVE _{EE}		Area		LPD _{BASE}		
Lighting – NC/ROB	Actual	Table 1	9 ¹⁸	Table 20 ¹⁸		Actual		Table 22 ¹⁸		
Measure/Type	HoursYr	WHF_{d}	HF _d WHF		$WHF_{e,heat}$	Life (yrs)		Cost (\$)		
Lighting – NC/ROB	Table 24 ¹⁹	1.067 ²⁰	1.19	8 ²⁰	0.00246 ²⁰	15 ²¹		Table 23 ²²		
IMPACT FACTORS										
Program	ISR	RR _E	RR_{D}		CFs	CF _w FI		ł	SO	
Business Incentive	100%	99% ²³	101% ²³	3	Table 2 ²⁴	Table 2 ²⁴	28% ²⁵		0.4% ²⁶	

¹⁸ See Appendix E. The fixture wattage and wattage reduction values are based on the specified fixture type. The baseline LPD is based on the specified space type. ¹⁹ See Appendix G. The annual hours of use are based on the specified space type.

²⁰ Analysis performed by Cadmus June 2015 based on 2015 NY TRM, Appendix D. HVAC Interactive Effects Multipliers.

²¹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS

²² See Appendix F.

²³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Values for prescriptive measures.

²⁴ See Appendix B: Load Shapes and Coincidence Factors.

²⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG impacts for prescriptive lighting.

²⁶ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Prescriptive Lighting: Lighting Controls – Multifamily, Code ML70, ML71												
Last Revised Date	7/1/2015											
MEASURE OVERVIEW												
Description	This meas	sure involves the	installa	ation of	lightin	g contr	ols on new or	existi	ng interic	r lighting		
	fixtures ir	fixtures in the common areas, individual units, or exterior spaces for multifamily buildings.										
Primary Energy Impact	Electric	Electric										
Sector	Multifam	Multifamily										
Program(s)	Multifam	Multifamily Efficiency Program										
End-Use	Lighting											
Project Type	Retrofit, N	New Construction	n, Repla	ace on E	Burnou	t						
GROSS ENERGY SAVING	S ALGORIT	HMS (UNIT SAVI	NGS)									
Demand Savings	$\Delta kW = Qt$	y _{FIXTURES} x Watts /	′ 1000 x	ĸ WHF _d								
Annual Energy Savings	∆kWh/yr	= Qty _{FIXTURES} x Wa	atts / 1	000 x H	oursYr	x SVG x	x WHF _{e,cool}					
	Δ MMBtu	/yr = -Qty _{FIXTURES} :	x Watts	s / 1000	x Hou	rsYr x S	VG x WHF _{e,hea}	ıt				
Definitions	Unit	= Lighting	contro	l project	t or spa	ace						
	Qty _{FIXTURES}	; = Total qu	antity o	of fixtur	es conr	nected	to the new co	ontrols				
	Watts	= Wattage	per fix	ture co	nnecte	d to the	e new control	(Watt	:s)			
	HoursYr	= Annual h	iours o	f equipr	nent o	peratio	on before insta	allatio	n of contr	ols		
		(hrs/year)										
	SVG	= % of ann	ual ligł	nting en	ergy sa	ived by	lighting cont	rol (%)				
	WHF_{d}	= Waste h	eat fac	tor for c	lemano	d to acc	count for cool	ing sav	vings fron	n reduced		
		run time										
	WHF _{e,cool}	= Waste h time	eat fac	tor for e	energy	to acco	ount for coolir	ng savi	ngs from	reduced run		
	WHF _{e,heat}	= Waste h	eat fac	tor for e	energy	to acco	ount for increa	ased h	eat load f	rom reduced		
		run time										
	1000	= Conversi	on: 10	00 Watt	s per k	W						
EFFICIENCY ASSUMPTIO	NS											
Baseline Efficiency	The basel	ine case is a man	ual sw	itch in tl	he abse	ence of	controls.					
High Efficiency	Lighting c	ontrols that auto	matica	Ily cont	rol the	conne	cted lighting s	ystem	s.			
PARAMETER VALUES	,,											
Measure/Type	Qty	Watts ²⁷		Hou	rsYr		SVG		Life (yrs) Cost (\$)		
All	Actual	Table 19 or Tab	le 21	Table	24 ²⁸		Table 25 ²⁸		9 ²⁹	Table 23 ³⁰		
Measure/Type	WHF _d	WHF _{e,cool}	WH	e,heat								
Retrofit	1.067 ²⁰	1.198 ²⁰	0.00	246 ²⁰								
IMPACT FACTORS	1											
Program	ISR	RR₅	F	R _D	C	Fs	CFw		FR	SO		
Multifamily	100%	107% ³¹	10	0% ³²	Tab	le 2 ³³	Table 2 ³³	11	.0% ³⁴	1.0% ³⁴		

²⁷ See Appendix E. The controlled fixture may be selected from either the baseline or installed wattage tables. The controlled wattage is determined using the wattage tables and the selected of controlled fixture type.

²⁸ See Appendix G. The annual hours of use and savings factors are based on the specified space type.

²⁹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

³⁰ Appendix F.

³¹ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; realization rates are based on weighted average results from the evaluation, adjusted for each measure group and program tracking changes. See workbook: MEP_EvaluationAdjustments.

³² Demand impacts have not been evaluated for the multifamily program. Until the next program evaluation, EMT assumes 100% realization rate.

³³ See Appendix B: Load Shapes and Coincidence Factors.

³⁴ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 4-5.

Multifamily Air Seal	ing
Last Revised Date	7/1/2014 (added to TRM for PY15)
MEASURE OVERVIEW	
Description	This measure involves sealing air leaks in the building envelop walls to decrease overall heating and cooling losses by natural air infiltration. Energy savings are achieved by reducing building heating and cooling loads that are served by the heating and cooling equipment.
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Kerosene
Sector	Multifamily
Program(s)	Multifamily Efficiency Program
End-Use	Heating, Cooling
Decision Type	Retrofit
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)
Demand savings Annual energy savings	Energy and Demand savings are based on project specific data and are counted for the specific heating and cooling fuels for the multifamily building.
GROSS ENERGY SAVIN	IGS ALGORITHMS (UNIT SAVINGS)
Demand savings	For low-rise multifamily buildings (3 stories or less):
	$\Delta kW = (CFM50_{PRE} - CFM50_{POST}) / NF \times DSF_{LR}$
	For high-rise multifamily buildings (4 or more stories):
	$\Delta kW = SQFT / 1,000 \times DSF_{HR}$
Annual Energy	For low-rise multifamily buildings (3 stories or less, with maximum 20 apartment units):
savings	Δ kWh = (CFM50 _{PRE} – CFM50 _{POST}) / NF x EESF _{LR}
	Δ MMBtu = (CFM50 _{PRF} – CFM50 _{POST}) / NF x HFSF _{LR}
	For high-rise multifamily buildings (4 or more stories, with maximum 20 apartment units):
	$\Delta kWh = SQFT / 1.000 \times EESF_{HR}$
	$\Delta MMBtu = SOFT / 1 000 \times HESE_{m}$
Dofinitions	$\frac{1}{1}$
Deminions	$CEM50_{res}$ = Pre-ungrade infiltration value
	$CEM50_{PRE} = Post-upgrade infiltration value$
	NF = Correction factor from CEM50 to natural infiltration rate
	SOFT = Floor area of conditioned facility (ft^2)
	DSF _{LR} = Demand savings factor for air sealing in low-rise MF building (kW/CFM)
	DSF _{HR} = Demand savings factor for air sealing in high-rise MF building ($kW/1000$ -ft ²)
	EESF _{LR} = Electric energy savings factor for air sealing in low-rise MF building (kWh/CFM)
	EESF _{HR} = Electric energy savings factor for air sealing in high-rise MF building (kWh/1000-ft ²)
	HFSF _{LR} = Heating fuel savings factor for air sealing in low-rise MF building (MMBtu/CFM)
	HFSF _{HR} = Heating fuel savings factor for air-sealing in high-rise MF building (MMBtu/1000- ft^2)
EFFICIENCY ASSUMPT	IONS
Baseline Efficiency	The baseline case is the existing multifamily building before the air-sealing project. For low-rise
	buildings, the program contractor will measure the pre-retrofit air leakage (CFM50 _{PRE}).
Efficient Measure	The high-efficiency case is the building after the air-sealing project. For low-rise buildings, the
	program contractor will measure the post-retrofit air leakage (CFM50 _{POST}).

Multifamily Air Sealing											
PARAMETER VALUES (DEEMED)											
Measure/Type	CFM50 _{PRE}	CFM50 _{POST}	SQFT	NF	DSF	EE	SF	HFS	F	Life (yrs)	Cost (\$)
Air Sealing	Actual	Actual	Actual	15 ³⁵	Table 3 Table 4	Tab Tab	Table 3 Table 4		3 4	15 ³⁵	\$247.86 ³⁶
IMPACT FACTORS											
Measure/Type	ISR	RR _E	R	R _D	CFs		CF	Fw		FR	SO
Air Sealing	100% ³⁷	69.5% ³⁸	100)% ³⁸	10.2%39	9	79.6	% ³⁹	1	1.0% 40	1.0%40

³⁵ Two story building with normal wind exposure in climate zone 2. Sherman, "Estimation of Infiltration for Leakage and Climate Indicators," Energy and Buildings, 10, 1987.

³⁶ Per dwelling unit costs based on program data from PY 2014.

 $^{^{37}}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

³⁸ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu); RR_E = [(RR_{ELECTRIC} × Δ MMBtu_{ELECTRIC}) + (RR_{FUEL} × Δ MMBtu_{FUEL})] / (Δ MMBtu_{ELECTRIC} + Δ MMBtu_{FUEL})

³⁹ Efficiency Maine Commercial Technical Reference Manual 2014.1; the measure's savings follow the heating and cooling consumption loadshape. Therefore, the coincidence factors for the measure are assumed to be the same as the coincidence factors for the heat pump measure.

⁴⁰ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Multifamily Attic/Roof Insulation											
Last Revised Date	7/1/2015										
MEASURE OVERVIEW	1										
Description	This measur	e involves ir	nproving th	e thern	nal res	sistance	of th	e building	envelope by u	upgrading	
	the insulation	the insulation in existing attic/roof constructions to higher total R-value. Energy savings are									
	achieved by	achieved by reduced heating and cooling loads.									
Energy Impacts	Electric, Nat	ural Gas, Oi	l, Propane, I	Keroser	ne, Wo	boc					
Sector	Multifamily										
Program(s)	Multifamily	Efficiency P	rogram								
End-Use	Heating, Co	oling									
Project Type	Retrofit										
DEEMED GROSS ENER	GY SAVINGS	(UNIT SAVII	NGS)								
Demand savings	Eneray and	Demand say	inas are ha	sed on i	nroiec	t snecifi	ic dat	a and are	counted for th	ne snecific	
Annual energy	heating and	Coolina fue	ls for the mi	ultifami	ilv huil	ldina.	c uur	a ana arc		ie specifie	
savings	neuting and	coomig juc		arcı yarını	iy sun	unig.					
GROSS ENERGY SAVIN		HMS (UNIT :	SAVINGS)								
Demand savings	$\Delta kW = SQFT$	-/1,000 x D	SF								
Annual Energy	$\Delta kWh = SQF$	T / 1,000 x I	EESF								
savings	$\Delta MMBtu = 3$	SQFT / 1,000) x HFSF/10								
Definitions	Unit :	= attic insula	ition project	t 					c. 2)		
	SQFI =	= Surface are	ea of installe	ed insul	ation	(= Area	must	t be ≥ 500	ft ⁻)		
	RVAL _{PRE} =	= R-value of	existing insi	ulation	1						
	RVAL _{POST} =	= Combined	R-value of f	inal ins	ulatio	n 			: 	1/1000 ft ²	
		= Demand sa	avings facto	r from a		isulatio	n in a	multifam	lly building (K)	ν/1000-π)	
	EESF	kWh/1000-1	ergy savings ft ²)	actor	Irom	atticins	ulatio	on in a mu	intriamily build	ing	
	HFSF :	= Heating fu	el savings fa	ctor fro	om att	tic insula	ation	in a multi	family building	S	
	((Therms/100	00-ft ²)								
	10 :	= Conversior	n factor: 10	= Thern	ns/MI	MBtu					
EFFICIENCY ASSUMPT	IONS										
Baseline Efficiency	The baseline	e condition i	s the existin	ig insula	ation v	with air-	seali	ng measui	res already im	plemented	
	(per progra	n requireme	ents).						-		
Efficient Measure	The efficien	cy measure	involves inc	reasing	insula	ation fo	r at le	east 500 ft	² area to meet	the state	
-	energy code	e (IECC 2009).								
PARAMETER VALUES	(DEEMED)										
Measure/Type	SQFT	RVALPRE	RVALPOST	DS	6F	EESI	F	HFSF	Life (yrs)	Cost (\$)	
				Tabl	e 6	Table	6	Table 6			
Insulation	Actual	Actual	Actual	Tabl	e 7	Table	2	Table 7	20 ⁴¹	\$775.32 ⁴²	
		Table 8 Table 8 Table 8							,		
				ſabl	e 9	Table	9	Table 9			
	100			<u> </u>				CT	FD		
ivieasure/Type	ISK 1000/ ⁴³		RR	D 45		F_S			FK	5U 1 00/ ⁴⁷	
Insulation	100%	$100\%^{43} 69.9\%^{44} 100\%^{45} 10.2\%^{46} 79.6\%^{46} 11.0\%^{47} 1.0\%^{47}$								1.0%	

⁴¹ Measure life for this measure is assumed to be 20 years for consistency with other Efficiency Maine programs; business programs cap all measure lives at 20 years. ⁴² Per dwelling unit costs based on program data from PY 2014.

 $^{^{43}}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁴⁴ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu); RR_E = [(RR_{ELECTRIC} × Δ MMBtu_{ELECTRIC}) + (RR_{FUEL} × Δ MMBtu_{FUEL})] / (Δ MMBtu_{ELECTRIC} + Δ MMBtu_{FUEL})

⁴⁵ Demand savings for this measure has not been evaluated yet. Until the next program impact evaluation, EMT assumes 100% realization rate.

Multifamily Wall Ins	ulation								
Last Revised Date	7/1/2015								
MEASURE OVERVIEW	1								
Description	This measur	e involves ir	nproving the	e thermal re	sistance	of the building	genvelope by ι	pgrading	
	the insulation	on in existing	g wall constr	uctions to h	igher tot	al R-value. Ene	ergy savings are	e achieved	
	by reduced	heating and	cooling load	ls. Insulatior	n of othe	r building com	ponents is not	covered	
	under this n	neasure.							
Energy Impacts	Electric, Nat	ural Gas, Oi	l, Propane, k	Kerosene, W	ood				
Sector	Multifamily								
Program(s)	Multifamily	Efficiency P	rogram						
End-Use	Heating, Co	oling							
Project Type	Retrofit								
DEEMED GROSS ENER	GY SAVINGS	(UNIT SAVII	NGS)						
Demand savings	Energy and	Demand say	inas are has	ed on projec	rt snerifi	c data and are	counted for th	e snerifir	
Annual energy	heating and	l coolina fue	ls for the mu	iltifamilv hui	Idina		counted for th	c specific	
savings	neuting and	cooming juc	is joi the ma	ntijunniy bul	iunig.				
GROSS ENERGY SAVIN	IGS ALGORIT	HMS (UNIT :	SAVINGS)						
Demand savings	$\Delta kW = SQFT$	「/ 1,000 x D	SF						
Annual Energy	$\Delta kWh = SQF$	T / 1,000 x	EESF						
savings	Δ MMBtu = 3	SQFT / 1,000	0 x HFSF/10						
Definitions	Unit =	nit = wall insulation project							
	SQFT =	Surface are	a of installed	d insulation					
	RVAL _{PRE} =	R-value of e	existing insul	ation					
	RVAL _{POS} =	Combined F	R-value of fir	nal insulatior	า				
	т =	Demand say	vings factor	from wall in:	sulation	in a multifamil	y building (kW,	/1000-ft ²)	
	DSF =	Electric ene	rgy savings f	factor from v	wall insu	lation in a mul	tifamily buildin	g	
	EESF (H	(Wh/1000-fi	t ²)						
	HFSF =	Heating fue	l savings fac	tor from wa	ll insulat	ion in a multifa	amily building		
	[]	Therms/100	0-ft ²)						
	10 =	Conversion	factor: 10 =	Therms/MN	1Btu				
EFFICIENCY ASSUMPT	IONS								
Baseline Efficiency	The baseline	e condition i	s the existin	g insulation	with air	sealing implen	nented (per pro	ogram	
	requiremen	ts).							
Efficient Measure	The efficien	cy measure	involves incr	reasing insul	ation to	meet the state	energy code (IECC	
	2009).								
PARAMETER VALUES	(DEEMED)								
Measure/Type	SQFT	RVALPRE	RVALPOST	DSF	EESF	F HFSF	Life (yrs)	Cost (\$)	
				Table 10	Table	10 Table 10)		
Insulation	Actual	Actual	Actual	Table 11	Table	11 Table 11	2048	526.95 ⁴⁹	
				Table 12	Table	12 Table 12			
				Table 13	Table	13 Table 13	5		
	165					65		60	
Nieasure/Type	ISR 1000/ ⁵⁰			$\frac{1}{\sqrt{52}}$	$-F_S$		FR	50 1.00 ⁽⁵⁴	
Insulation	100%**	69.3%	100%	•	۷% -	/9.6%**	11.0%	1.0%	

⁴⁶ Efficiency Maine Commercial Technical Reference Manual 2014.1; the measure's savings follow the heating and cooling consumption loadshape. Therefore, the coincidence factors for the measure are assumed to be the same as the coincidence factors for the heat pump measure.

⁴⁷ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

⁴⁹ Per dwelling unit costs based on program data from PY 2014.

⁴⁸ Measure life for this measure is assumed to be 20 years for consistency with other Efficiency Maine programs; business programs cap all measure lives at 20 years.

⁵⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

Multifamily Floor In	sulation	ulation							
Last Revised Date	7/1/2015								
MEASURE OVERVIEW									
Description	This measu the insulati by reduced	re involves in on in existing heating and	mproving the g floor const cooling load	e thermal res ructions to h ds.	sistance of th igher total R	ne building e -value. Ener	nvelope by ι gy savings ar	ipgrading e achieved	
Energy Impacts	Electric, Na	tural Gas, Oi	l, Propane, k	Kerosene, Wo	boc				
Sector	Multifamily	/							
Program(s)	Multifamily	/ Efficiency P	rogram						
End-Use	Heating, Co	oling	-						
Project Type	Retrofit	-							
DEEMED GROSS ENER	GY SAVINGS	G (UNIT SAVI	NGS)						
Demand savings Annual energy savings	Energy and heating and	nergy and Demand savings are based on project specific data and are counted for the specific neating and cooling fuels for the multifamily building.						e specific	
GROSS ENERGY SAVIN	IGS ALGORIT	THMS (UNIT	SAVINGS)						
Demand savings	$\Delta kW = SQF$	T / 1,000 x D	SF						
Annual Energy	$\Delta kWh = SQ$	FT / 1,000 x	EESF						
savings	Δ MMBtu =	SQFT / 1,000	0 x HFSF/10						
Definitions EFFICIENCY ASSUMPT Baseline Efficiency Efficient Measure	Unit = SQFT = RVAL _{PRE} = RVAL _{POS} = T = DSF = EESF (HFSF = (10 = IONS The baselin requirement The efficier	Unit= floor insulation projectSQFT= Surface area of installed insulationRVALPRE= R-value of existing insulationRVALPOS= Combined R-value of final insulationT= Demand savings factor from floor insulation in a multifamily building (kW/1000-ft²)DSF= Electric energy savings factor from floor insulation in a multifamily buildingEESF(kWh/1000-ft²)HFSF= Heating fuel savings factor from floor insulation in a multifamily building (Therms/1000-ft²)10= Conversion factor: 10 = Therms/MMBtuONSThe baseline condition is the existing insulation with air sealing implemented (per program requirements).							
	2009).								
		$\frac{\mathbf{F}_{\mathbf{F}}_{\mathbf{F}_{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$							
Insulation	Actual	Actual	Actual	Table 10 Table 11 Table 12 Table 13	Table 10 Table 11 Table 12 Table 13	Table 10 Table 11 Table 12 Table 13	20 ⁵⁶	468.54 ⁵⁷	

⁵¹ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu);

⁵⁵ Assumed to be the same as savings factors for wall insulation measure

⁵⁶ Measure life for this measure is assumed to be 20 years for consistency with other Efficiency Maine programs; business programs cap all measure lives at 20 years.

⁵⁷ Per dwelling unit costs based on program data from PY 2014.

 $RR_{E} = [(RR_{ELECTRIC} \times \Delta MMBtu_{ELECTRIC}) + (RR_{FUEL} \times \Delta MMBtu_{FUEL})] / (\Delta MMBtu_{ELECTRIC} + \Delta MMBtu_{FUEL})$

⁵² Demand savings for this measure has not been evaluated yet. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁵³ Efficiency Maine Commercial Technical Reference Manual 2014.1; the measure's savings follow the heating and cooling consumption loadshape. Therefore, the coincidence factors for the measure are assumed to be the same as the coincidence factors for the heat pump measure.

⁵⁴ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

IMPACT FACTORS							
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO
Insulation	100% ⁵⁸	69.0% ⁵⁹	$100\%^{60}$	10.2% ⁶¹	79.6% ⁶¹	11.0% ⁶²	1.0% ⁶²

 $^{^{58}}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵⁹ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu);

 $RR_{E} = [(RR_{ELECTRIC} \times \Delta MMBtu_{ELECTRIC}) + (RR_{FUEL} \times \Delta MMBtu_{FUEL})] / (\Delta MMBtu_{ELECTRIC} + \Delta MMBtu_{FUEL})$

⁶⁰ Demand savings for this measure has not been evaluated yet. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁶¹ Efficiency Maine Commercial Technical Reference Manual 2014.1; the measure's savings follow the heating and cooling consumption loadshape. Therefore, the coincidence factors for the measure are assumed to be the same as the coincidence factors for the heat pump measure.

⁶² Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Multifamily Boiler or Furnace Retrofit/Replacement										
Last Revised Date	1/1/2015									
MEASURE OVERVIEW										
Description	This measure involves the p	ourchase and in	nstallation of r	ew high-efficie	ency condensir	ng and non-				
	condensing boilers and furr	naces to replac	e the existing	heating equipr	nent. For this _l	prescriptive				
	measure, the new equipme	ent is assumed	to be the sam	e type (boiler c	or furnace) and	l have the				
	same capacity and heating	fuel. (Fuel swit	ching projects	are processed	through the c	ustom				
	approach.)									
Energy Impacts	Natural Gas, Oil, Propane, K	Kerosene, Woo	d							
Sector	Multifamily									
Program(s)	Multifamily Efficiency Progr	ram								
End-Use	Heating									
Decision Type	Retrofit, New Construction,	, Replace on Βι	urnout							
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS	5)								
Demand savings	$\Delta kW = 0$									
Annual energy	Energy savings are based of	n project checi	fic data							
savings	Energy savings are based of	iergy savings are based on project specific data.								
GROSS ENERGY SAVIN	S ALGORITHMS (UNIT SAVINGS)									
Demand savings	.kW = 0									
Annual Energy	∆kWh/yr =0	.kWh/yr = 0								
savings	$\Delta MMBtu/yr = CAP_{INPUT} / 1,000 \times (EF_{EE} / EF_{BASE} - 1) \times EFLH_{HEAT}$									
Definitions	Jnit = 1 high efficiency heating system									
	CAP _{INPUT} = Input heating of	capacity of the	new equipme	nt (MBtu/h)						
	EFLH _{HEAT} = Full load heating	ng hours defin	ed as the total	annual fuel co	nsumption of	the				
	equipment divid	led by its full lo	ad heating ca	pacity (in Btu/y	vr and Btu/h, r	espectively).				
	EF _{EE} = Rated efficience	cy of the new h	igh-efficiency	equipment						
	EF _{BASE} = Rated efficience	cy of the existin	ng heating equ	ipment. If the	efficiency of t	he existing				
	equipment is un	known, use 84	% as a default							
	1,000 = Conversion fac	ctor: 1,000 = M	Btu/MMBtu							
EFFICIENCY ASSUMPT	IONS									
Baseline Efficiency	The baseline case for retrof	fit is the existin	g furnace or b	oiler. The base	eline case for r	new				
	construction/replace on bu	rnout is boiler,	/furnace that r	neets the fede	ral minimum c	of 84% AFUE				
	for an oil boiler.									
Efficient Measure	The high-efficiency case is a new furnace or boiler.									
PARAMETER VALUES	(DEEMED)									
Measure/Type	CAPINPUT	EF _{BASE}	EFEE	EFLH _{HEAT}	Life (yrs)	Cost (\$)				
Prescriptive -						1 983 90 ⁶⁵				
Retrofit		Table 14				1,000.00				
Prescriptive – ROB,	Actual Actual 2 455 ⁶³ 20 ⁶⁴ 297. ¹									
NC	/ CCuui		Actual	2,455**	20°*	207.00				
Fast Track - Retrofit		1,93								
Fast Track – ROB, NC		Actual				297.59 ⁶⁶				

⁶³ Value is based on TMY3 heating degree hours for Portland, Bangor and Caribou and an assumed design temperature of -11 degrees F.

⁶⁴ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

Appendix B. ⁶⁵ Per dwelling unit costs based on program data from PY 2014.

⁶⁶ Per dwelling unit costs based on project cost from PY 2014 program data and 15% incremental cost based on ratio of full and incremental cost reported for hot water boiler in DEER and non-DEER Ex Ante 13-14 Cycle database accessed through READI (Remote Ex-Ante Database Interface) http://www.deeresources.com/.

Multifamily Boiler or Furnace Retrofit/Replacement							
IMPACT FACTORS							
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO
AFUE	$100\%^{67}$	69.2% ⁶⁸	NA	NA	NA	$11.0\%^{69}$	$1.0\%^{69}$

⁶⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%). ⁶⁸ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu);

 $R_{E} = [(R_{ELECTRIC} \times \Delta MMBtu_{ELECTRIC}) + (R_{FUEL} \times \Delta MMBtu_{FUEL})] / (\Delta MMBtu_{ELECTRIC} + \Delta MMBtu_{FUEL})$ ⁶⁹ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Multifamily Boiler Control										
Last Revised Date	7/1/2014									
MEASURE OVERVIEW										
Description	This measure hot water bo heating and h boilers or for	This measure involves the installation of a zone thermostat control to an existing non-condensing not water boiler system. The control resets the hot water temperature set point to match the neating and hot water needs of the building. Boiler controls are not eligible for condensing poilers or for new boiler installations.								
Energy Impacts	Natural Gas,	Oil, Propane, k	(erosene, Wo	bd						
Sector	Multifamily	, , ,	,							
Program(s)	, Multifamily E	fficiency Prog	am							
End-Use	Heating	, 0								
Decision Type	Retrofit									
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS	5)							
Demand savings	$\Delta kW = 0$									
Annual energy savings	Energy saving	gs are based o	n project spec	ific data.						
GROSS ENERGY SAVIN	IGS ALGORITH	MS (UNIT SAV	'INGS)							
Demand savings	$\Delta kW = 0$	kW = 0								
Annual Energy	$\Delta kWh/yr = 0$									
savings	∆MMBtu/yr =	= CAP _{INPUT} × EF	$LH_{HEAT} \times ESF_{BC}$	/ 1,000						
Definitions	Unit =	Boiler control	(s) installed o	n an existing b	oiler or boiler s	ystem				
	CAP _{INPUT} =	Total input he	eating capacity	y of the existing	g non-condens	ing boiler or bo	oiler system			
	EFLH _{HEAT} (MBH)								
	=	Full load heat	ing hours defi	ned as the tota	al annual fuel c	onsumption of	the			
	ESF _{BC} e	quipment divi	ded by its full	load heating c	apacity (in Btu	and Btu/h, res	pectively).			
	1,000 =	Energy saving	s factor for ho	ot water boiler	controls					
	=	Conversion fa	ctor: 1,000 =	MBtu/MMBtu						
EFFICIENCY ASSUMPT	IONS									
Baseline Efficiency	The baseline	case is the exi	sting non-con	densing hot wa	iter boiler or bo	oiler system th	at operates			
	at a constant	hot water ten	nperature set	point.						
Efficient Measure	The efficient	case is the exis	sting non-con	densing hot wa	iter boiler or bo	piler system th	at operates			
	with a boiler	control to rese	et the hot wat	er temperature	e setpoint to ac	ljust to ambiei	nt weather			
	or facility hea	ating and hot v	vater needs.							
PARAMETER VALUES	(DEEMED)									
Measure/Type	CAPINPUT	EFLH _{HEAT}	ESF _{BC}			Life (yrs)	Cost (\$)			
Boiler Reset Control	Actual	2,455′°	5%'*			15'*	153.00'			
IMPACT FACTORS		25		a -	 _					
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR 11.176	SO			
Boiler Reset Control	100%′*	100%' 3	NA	NA	NA	11.0%′°	1.0%′°			

⁷³ Per dwelling unit costs based on program data from PY 2014.

⁷⁰ Value based on TMY3 heating degree hours for Portland, Bangor and Caribou and an assumed design temperature of -11 degrees F.

⁷¹ As referenced in Efficiency Maine Prescriptive Path Technical Reference Manual Version 2014.1, page 9; New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, New York Evaluation Advisory Contractor Team & TecMarket Works, October 15, 2010; "Boiler Reset Controls", pg 50-52

⁷² ACEEE (2006). Emerging Technologies Report: Advanced Boiler Controls. Prepared for ACEEE; Page 2. (<u>http://aceee.org/files/pdf/2006_BoilerControls.pdf</u>)

⁷⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁷⁵ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁷⁶ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Programmable Ther	mostats							
Last Revised Date	7/1/2015							
MEASURE OVERVIEW								
Description	This measure involves the installation of programmable electronic thermostats with \pm 1.5° of							
	setpoint on all heating and cooling units and the disposal of existing mechanical thermostats							
	according to local codes.							
Energy Impacts	Electric, Natural Gas, Oil, Propane, Kerosene, Wood							
Sector	Multifamily							
Program(s)	Multifamily Efficiency Program							
End-Use	Heating, Cooling							
Decision Type	Retrofit, New Construction, Replace on Burnout							
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)							
Demand savings	$\Delta kW = 0$							
Annual energy								
savings	Energy savings are based on project specific data.							
GROSS ENERGY SAVIN	IGS ALGORITHMS (UNIT SAVINGS)							
Demand savings	$\Delta kW = 0$							
Annual Energy	$\Delta kWh/yr = CAP_{C} \times 12 / SEER \times EFLH_{C} \times ESFC + (CAP_{RH} / 3.412 + CAP_{HP} / HSPF) \times EFLH_{H} \times ESFH$							
savings	Δ MMBtu/yr = CAP _{INPUT} / 1,000 × EFLH _H × ESFH							
Definitions	CAP_{c} = Total electric cooling capacity of all HVAC equipment to be controlled (Tons)							
	CAP_{HP} = Total output heating capacity of controlled heat pumps (kBtu/h).							
	CAP_{RH} = Total heating capacity of controlled electric resistance heating (kBtu/h).							
	CAP _{INPLIT} = Total input heating capacity of controlled non-electric heating equipment							
	(kBtu/h).							
	SEER = Seasonal Energy Efficiency Ratio of cooling equipment (Btu/W-h).							
	HSPF = Heating Seasonal Performance Factor (Btu/watt-h), a measure of the seasonal							
	average efficiency of the heat pump in heating mode.							
	EFLH _c = Equivalent full load hours – cooling							
	EFLH _H = Equivalent full load hours – heating							
	ESFC = Energy Savings Factor – Cooling: the estimated percentage reduction in annual							
	electric cooling usage resultant from implementation of HVAC controls.							
	ESFH = Energy Savings Factor – Heating: the estimated percentage reduction in annual							
	electric/fuel heating consumption resultant from implementation of HVAC							
	controls.							
	3.412 = Conversion Factor (3.412 = Btu/Wh)							
	12 = Conversion factor (12 kBtu/ton)							
	1,000 = Conversion Factor (1,000 = kBtu/MMBtu)							
EFFICIENCY ASSUMPT	IONS							
Baseline Efficiency	The baseline case is the existing building with heating and cooling equipment using mechanical							
	thermostats.							
Efficient Measure	The high-efficiency case includes programmable electronic thermostats controlling the heating							
	and cooling equipment.							

Programmable Thermostats												
PARAMETER VALUES	PARAMETER VALUES (DEEMED)											
Measure/Type	CAP _c	CAP _{HP}	C	CAP _{RH}	CAP	NPUT	SE	EER	HSPI	F	Life (yrs)	Cost (\$)
Thermostat	Actual	Actual	A	ctual	Act	ual	1	LO	7.7		8 ⁷⁷	138.50 ⁷⁸
Measure/Type	EFLH _H	EFLH _c	[ESFC	ES	FH						
Thermostat	2,455 ⁷⁹	239 ⁸⁰	0	0.09 ⁸¹	0.06	58 ⁸¹						
IMPACT FACTORS	IMPACT FACTORS											
Measure/Type	ISR	RR _E		RR	D	C	Fs	C	Fw		FR	SO
Thermostat	100% ⁸²	100%8	3	NA	4	N	NA		NA		1.0%84	1.0%84

⁷⁷ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 2.

⁷⁸ Per dwelling unit costs based on program data from PY 2014.

⁷⁹ ELFH_H based on TMY3 temperature bin analysis with a design temperature of -11 degrees F. ELFH_H = annual heating degree hours/heating degrees at design temperature = 183,454 HDH/76 degree F.

 $^{^{80}}$ ELFH_c based on TMY3 temperature bin analysis for unit sized to provide 100% of cooling load at 93 degrees F.

⁸¹ As referenced in Efficiency Maine Prescriptive Path Technical Reference Manual Version 2014.1, page 11; New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, New York Evaluation Advisory Contractor Team & TecMarket Works, October 15, 2010; "Setback Thermostat", pg 53-56

⁸² EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁸³ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate. ⁸⁴ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Smart Pump with EC	Smart Pump with ECM Motor								
Last Revised Date	7/1/2014 (ad	ded to TRM fo	r PY15)						
MEASURE OVERVIEW	MEASURE OVERVIEW								
Description	The measure	involves the in	stallation of V	ariable Freque	ncy Drive (VFD) pumps with E	lectronically		
	Commutated	Commutated Motors (ECM) for hot water supply pumps.							
Energy Impacts	Electric								
Sector	Multifamily								
Program(s)	Multifamily E	fficiency Progr	am						
End-Use	Motors/Drive	es							
Decision Type	Retrofit								
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)						
Demand savings									
Annual energy	Energy saving	gs are based or	n project specij	fic data.					
savings									
GROSS ENERGY SAVIN	IGS ALGORITH	MS (UNIT SAV	INGS)						
Demand savings	$\Delta kW = HP \times D$	\kW = HP x DSF							
Annual Energy savings	Δ kWh = HP x	ESF							
Definitions	Unit =	1 existing pun	np installed wit	th VFD control	device				
	HP =	Rated motor h	horsepower (h	p)					
	DSF =	Demand savin	ngs factor (kW/	'hp)					
	ESF =	Energy saving	s factor (kWh/	hp)					
EFFICIENCY ASSUMPT	IONS								
Baseline Efficiency	The baseline	case is the exis	sting equipmer	nt with motors	operating at fu	ull speed.			
Efficient Measure	This high-effi	ciency case inv	olves new high	n-efficiency EC	M motors cont	rolled by varia	ble		
	frequency dri	ives.							
PARAMETER VALUES									
Measure/Type	HP	DSF	ESF			Life (yrs)	Cost (\$)		
Smart Pump	Actual	Actual 0.188 ⁸⁵ 1,746 ⁸⁵ 15 ⁸⁶ 79.50 ⁸⁷							
IMPACT FACTORS									
Measure/Type	ISR	RR _E	RR _D	CFs	CFw	FR	SO		
Smart Pump	100% ⁸⁸	100% ⁸⁹	100% ⁸⁹	0% ⁹⁰	100% ⁹¹	11.0% ⁹²	1.0%92		

⁸⁵ National Grid 2001 values averaged from previous evaluations of VFD installations. Values for hot water pump selected.

⁸⁶ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 2. ⁸⁷ Costs based on program data from PY 2014.

⁸⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

⁸⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁹⁰ This measure does not reduce electric demand during the summer peak period.

⁹¹Winter Peak Coincidence Factor for this measure is embedded in the evaluated peak demand impact.

⁹² Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Ductless Heat Pun	np
Last Revised Date	7/1/2015
MEASURE OVERVIE	W
Description	This measure involves the purchase and installation of a high efficiency ductless heat pump (DHP)
	system as the primary heating system in new construction, gut-rehab or planned
	retirement/upgrade multifamily projects.
Energy Impacts	Electric
Sector	Residential
Program(s)	Multifamily Program
End-Use	Cooling, Heating
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS EN	ERGY SAVINGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta k W_{max} = 0.57, \Delta k W_{WP} = 0.18, \Delta k W_{SP} = 0.02$
Annual Energy	$\Delta kWh/yr = 874$
Savings	$\Delta kWh_{H} = 845$
	$\Delta kWh_c = 29$
GRUSS ENERGY SAV	Medeled
Demanu Savings	
Annual Energy	
Savings	Modeled ⁹³
	Heating and cooling savings are modeled using TMY3 data for Portland, Bangor and Caribou.
	Results are weighted based on population (71.2% Portland, 23.4% Bangor, 5.4% Caribou) ⁹⁴ .
	Savings were calculated based on a model employing the following key assumptions:
	 Average annual Heat Loss is 30 MMBtu per year per housing unit corresponding to an
	average UA of 161 MMBtu/h/deg F.
	 DHP's contribution to heating does not exceed 50% of the home's heating load in any
	temperature bin. Even in temperature bins in which 100% of the home's heating load can
	be supplied by the DHP, the DHP supplies 50% of the heating load, and the remaining 50%
	is supplied by the existing heating system to account for behavior effects. ³³
	DHP heating output capacity and DHP heating efficiency vary linearly with outside air
	temperature.
	Heating is called for when outside air temperature is less than or equal to 65°F.
	• Cooling is called for when outside air temperature is greater than or equal to 70°F.
Definitions	Unit = 1 ductless heat pump (DHP) system
	HSPF _B = Heating seasonal performance factor of the baseline DHP (Btu/Watt-hr)
	HSPF _{EE} = Heating seasonal performance factor of the high-efficiency DHP (Btu/Watt-hr)
	$CAP_{Cool} = Rated cooling capacity of the DHP (kBtu/h)$
	CAP_{Heat} = Rated heating capacity of the DHP (kBtu/h)
	SEER _B = Seasonal energy efficiency ratio for baseline cooling unit (Btu/Watt-hr)
	= Seasonal energy eniciency ratio for high-eniciency DHP (Blu/ Watt-hr)

⁹³ Based on Excel Workbook for Ductless Heat Pump

⁹⁴ Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract

⁹⁵ Heat load offset of 50% is extrapolated from other findings. Ecotope, Ductless Heat Pump Retrofits in Multifamily and Small Commercial Buildings, December 7, 2012 reported savings were equivalent to 43-75% heat load offset in multifamily buildings.

Ductless Heat Pump											
EFFICIENCY ASSUMPTIONS											
Baseline Efficiency	The baselin	e case assum Federal minir	es the multif	amily units	wou Nent	ld be he	ated w	ith ne factur	w ductles	s he	eat pumps
	2015: HSPF	2015: HSPF=8.2 and SEER=14.0.									
Efficient Measure	^e The high-efficiency case assumes a new <i>high efficiency</i> ductless heat pump that meets minimum										
	efficiency requirements for program rebate: HSPF=12.0 Btu/W-h HSPF=12.0 and SEER=18.0.										
PARAMETER VALUE	S										
Measure	CAP _{Heat}	CAP _{Cool}	HSPF _E	HSPF _B	S	SEER _E	SEE	R _B	Life (yrs	5)	Cost (\$)
DHP Retrofit	17.5 ⁹⁶	14.2 ⁹⁶	13.2 ⁹⁶	8.2 ⁹⁷	2	25.6 ⁹⁶	14	98	18 ⁹⁹		\$682 ¹⁰⁰
IMPACT FACTORS	IMPACT FACTORS										
Measure	ISR	RRE	RR _D	CFs		CF	W		FR		SO
DHP – NC/ROB	100 ^{%101}	100 ^{%102}	100% ¹⁰²	3.0% ¹⁰³		32.4%	6 ¹⁰³	11	.0% ¹⁰⁴		1.0% ¹⁰⁴

⁹⁶ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

⁹⁷ Federal minimum efficiency requirement for units manufactured on or after January 1, 2015

⁹⁸ DOE standards for Central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015

⁽http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75) ⁹⁹ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

¹⁰⁰ The incremental cost is the difference in cost between a typical high-efficiency unit (\$1,645 based on Fujitsu model 12RLS2, ecomfort.com) and a typical baseline unit (\$963 based on LG model LS093HE, ecomfort.com).

¹⁰¹ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

¹⁰² This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁰³ See Appendix B.

¹⁰⁴ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Ductless Heat Pump	Retrofit – Low Income Multifamily
Last Revised Date	7/1/2015
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of a high efficiency ductless heat pump (DHP) system to supplement the existing heating system in electric heated homes and to replace existing window air conditioning units. The new DHP equipment may have one (single-head) or multiple (multi-head) indoor units per outdoor unit.
Energy Impacts	Electric
Sector	Residential
Program(s)	Low Income Program
End-Use	Cooling, Heating
Decision Type	Retrofit
DEEMED GROSS ENER	GY SAVINGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW_{max} = 0.89$ $\Delta kW_{WP} = 0.62$ $\Delta kW_{SP} = 0.00$
Annual Energy Savings	$\Delta kWh/yr = 3,013$
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)
Demand Savings	Modeled
Annual Energy Savings	 Modeled¹⁰⁵ Heating and cooling savings are modeled using TMY3 data for Portland, Bangor and Caribou. Results are weighted based on population (71.2% Portland, 23.4% Bangor, 5.4% Caribou)¹⁰⁶. Savings were calculated based on a model employing the following key assumptions: Average annual Heat Loss is 30 MMBtu corresponding to an average UA of 161 MMBtu/h/deg F. DHP's contribution to heating does not exceed 35% of the home's heating load in any temperature bin. Even in temperature bins in which 100% of the home's heating load can be supplied by the DHP, the DHP supplies 35% of the heating load, and the remaining 65% is supplied by the existing heating system to account for distribution and behavior effects.¹⁰⁷ DHP heating output capacity and DHP heating efficiency (both baseline and efficient units) vary linearly with outside air temperature is less than or equal to 65°F. Cooling is called for when outside air temperature is greater than or equal to 70°F. For homes that have equivalent of whole home A/C already installed, DHP will replace the cooling load equivalent to the DHP's rated capacity. For homes that have existing partial cooling (i.e. 1 or 2 existing window A/C units), it is unknown if the DHP will be installed in the same areas served by the existing window A/C units. If installed in the same area, the DHP will replace the existing cooling load and result in positive savings due to increased efficiency. However, if installed in a different area, DHP may result in additional cooling load and hence increased energy use. Without any in-situ data, zero net savings is assumed for homes with existing partial cooling. For homes with no existing cooling load and hence increased energy use. Without any in-situ data, zero met savings is assumed for homes with existing partial cooling. For homes with no existing cooling equipment, it is assumed that the DHP will be used to itt full cooling capacity. <!--</th-->

 ¹⁰⁵ Based on Excel Workbook for Ductless Heat Pump
 ¹⁰⁶ Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract
 ¹⁰⁷ Heat load offset of 16% is consistent with findings of the Low Income Weatherization Program Evaluation, NMR Group, 7/1/2015.

Ductless Heat Pump Retrofit – Low Income Multifamily									
Definitions	Unit	= 1 ductless heat pump (DHP) system							
	EFB	= Effi	= Efficiency Factor of electric baseboard heating system (Btu/Watt-hr)						
	HSPF _E	= Hea	= Heating seasonal performance factor of the high-efficiency DHP (Btu/Watt-hr)						
	CAP _{Cool}	= Rat	= Rated cooling capacity of the DHP (kBtu/h)						
	CAP_{Heat}	= Rat	= Rated heating capacity of the DHP (kBtu/h)						
	SEER _B	= Sea	= Seasonal energy efficiency ratio for baseline DHP (Btu/Watt-hr)						
	SEER _E	= Sea	= Seasonal energy efficiency ratio for high-efficiency DHP (Btu/Watt-hr)=						
	%COOL _{FUL}	L Perce	Percentage of homes with existing cooling equipment equivalent of a whole						
		home	home air conditioner (equivalent of 3 window A/C units)						
	%COOL _{NOP}	_{NE} = Per	= Percentage of homes with no existing cooling equipment						
	%FUEL	= Hor	ne heating	fuel distrib	ution e	xcludir	ng coal an	d other	
EFFICIENCY ASSUMPTIONS									
Baseline Efficiency	The baseline case assumes the home retains its existing electric resistance, natural gas, oil,								
	kerosene, or propane heating system and uses a window air conditioning unit for cooling (or has no								
	cooling). A	cooling). A weighted average of the blended baseline fuel heating systems and electric resistance							
	heating sy	heating systems in Maine homes and single package air conditioner are used in the model (see							
	Table 1).								
Efficient Measure	e The high-efficiency case assumes the home retains its existing heating system and adds a new high								
	efficiency ductless heat pump that meets minimum efficiency requirements for program rebate:								
	HSPF=12.0	0 Btu/W-h.							
PARAMETER VALUES									
Measure	CAP _{Heat}	CAP _{Cool}	HSPFE	EFB	SEE	R _E	SEER _B	%COOL _{FUL}	COOL _{NONE}
DHP Retrofit	17.5 ¹⁰⁸	14.2 ¹⁰⁸	13.2 ¹⁰⁸	3.4 ¹⁰⁹	25.6	5 ¹⁰⁸	9.8 ¹¹⁰	40%111	21% ¹¹²
Measure								Life (yrs)	Cost (\$)
DHP Retrofit								18113	\$Actual ¹¹⁴
IMPACT FACTORS									
Measure	ISR	RR _E	RR _D	CF	s		CFw	FR	SO
DHP Retrofit	100% ¹¹⁵	100% ¹¹⁶	100% ¹¹	0.0%	6117	69	.5% ¹¹⁷	0% ¹¹⁸	0% ¹¹⁸

¹⁰⁸ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

¹⁰⁹ Assumes electric baseboard heating system has virtually no distribution losses.

¹¹⁰ Federal minimum efficiency requirement for units manufactured before January 1, 2015

¹¹¹ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put_power_rates_on_ice_that_s_a_cool_idea_/</u>. In 2010, an estimated 79% of customers in ISO-New England region had room air conditioners. Of the 79%, 40% of homes have equivalent of whole home A/C (3 window A/C's); 39% of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21% have no cooling equipment installed.

¹¹² Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79% of customers in ISO-New England region had room air conditioners. Of the 79%, 40% of homes have equivalent of whole home A/C (3 window A/C's); 39% of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21% have no cooling equipment installed.

¹¹³ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

 $^{^{114}}_{115}$ Total cost to program which covers 100% of installation cost..

 $^{^{115}}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

¹¹⁶ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹¹⁷ See Appendix B.

¹¹⁸ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% NTG.

Fuel	Baseline: Main Heating Equipment	Efficiency Measure	Share	Efficiency		
Heating Baseline Assumptions						
			Calculated			
Electric	Electric Baseboard	HSPF	Separately	3.4		
Gas	Gas-Fired Forced hot water boiler	AFUE	6%	75%		
Gas	Gas-Fired Steam boiler	AFUE	3%	75%		
Propane	Propane-Fired Forced hot water boiler	AFUE	8%	75%		
Propane	Propane-Fired Steam boiler	AFUE	4%	75%		
Oil	Oil-Fired Forced hot water boiler	AFUE	22%	75%		
Oil	Oil-Fired Steam boiler	AFUE	22%	75%		
Oil	Oil-Fired Ducted Furnace	AFUE * Duct Efficiency	22%	56%		
Wood	Wood Stove	AFUE	12%	60%		
Blended	Blended MMBtu Baseline	Blended Efficiency	100.0%	76%		
Duct Efficiency 75						
Cooling Baseline Assumptions						
Electric	Single-Package Air Conditioner	SEER	40%	14		
Electric	Single-Package Air Conditioner	EER	40%	12		

Table 1. Parameters for Existing Heating Systems

Sources

DOE standards for boilers manufactured on or after September 1, 2012

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72)

DOE standards for furnaces manufactured on or after May 1, 2013

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72)

US DOE: Better Duct Systems for Home Heating and Cooling (http://www.nrel.gov/docs/fy05osti/30506.pdf) DOE standards for Central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015 (http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75) Maine Governor's Energy Office, SPACE HEATING FUEL COMPARISON CALCULATOR

(http://www.maine.gov/energy/fuel_prices/heating-calculator.php)

DOE standards for AC and Heat Pump (on or after January 23, 2006, and before January 1, 2015)

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75)

High Efficiency Water I	Heater
Last Revised Date	7/1/2015
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of new ENERGY STAR high-efficiency
	water heating equipment to replace the existing water heater. For this prescriptive measure,
	the new equipment is assumed to have the same capacity and heating fuel as the replaced
	equipment. Also, low-flow devices must also be installed if they are not already in use. (Fuel
	switching projects are processed through the custom approach.)
Primary Energy Impact	Electric, Natural Gas, Oil, Propane, Propane, Wood
Sector	Multifamily
Program(s)	Multifamily Efficiency Program
End-Use	DHW
Decision Type	Retrofit, New Construction, Replace on Burnout
DEEMED GROSS ENERGY	SAVINGS (UNIT SAVINGS)
Demand Savings	Energy savings are based on project specific data.
Annual Energy Savings	
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)
Demand Savings	Storage-Type Water Heaters: $\Delta kW = NA$
	Electric Instantaneous Water Heaters: $\Delta kW = UA_{BASE} \times \Delta T_s / 3,412$
	Non-Electric Instantaneous Water Heaters: Δ kW = NA
	Indirect Water Heaters: $\Delta kW = NA$
	Heat Pump Water Heaters: $\Delta kW_{WP} = 0.374^{119} \Delta kW_{SP} = 0.175^{119}$
Annual Energy Savings	Instantaneous/Storage-Type Water Heaters. Heat Pump Water Heaters
	• Electric:
	$\Delta kWh = GPD \times 365 \times 8.33 \times \Delta T_W / 3.412 \times (1/EF_{RASE-EWH} - 1/EF_{EE})$
	• Fossil-fuel fired:
	 If tank volume is less than or Equal to 50 gallons:
	Δ MMBtu = GPD x 365 x 8.33 x Δ T _w / 1,000,000 x (1/EF _{BASE-NEWH} – 1/EF _{EF})
	If tank volume is greater than 50 gallons:
	Δ MMBtu = GPD x 365 x 8.33 x Δ T _w / 1,000,000 x (1/TE _{BASE} – 1/TE _{EE})
	Indirect Water Heaters (V<50 Gallons)
	$\Delta kWh = NA$
	Δ MMBtu = GPD x 365 x 8.33 x Δ T _W / 1,000,000 x (1/EC _{BASE-NEWH} – 1/EC _{EE}) + [TYPE _{BASE} x (UA _{BASE})
	/EC _{BASE} – UA _{EE} /EC _{EE}) x ΔTs / 1,000,000 x 8,760]
	In diaset Materia Usertean (16.50 Cellere)
	Indirect Water Heaters (V>50 Gallons)
	$\Delta KWH = NA$
	$\Delta W W D U = GPD X 303 X 0.33 X \Delta T_W / I,000,000 X (I/CC_{BASE-NEWH} = I/CC_{EE}) + (IIA_V V (I/CAD_V V (I/2))/AT_1 / CC_V V (I/CAD_V AT_C / I 000,000 X)$
	$[117 E_{BASE} \times [[{(CAP / 800) + (110 \times V)}]/\Delta T_{TEST}] / EC_{BASE} - (OA_{EE} / EC_{EE})] \times \Delta TS / 1,000,000 \times 1000,000 \times 1000,000 \times 1000,0000 \times 1000,0000000000$
	8,700]

¹¹⁹ Steven Winters Associates, Inc., Heat Pump Water Heaters: Evaluation of Field Installed Performance, 2012

High Efficiency Water Heater					
	Additional Details:				
	UA _{BASE} is calculated per guidance in the New York Standard Approach for Estimating Energy				
	Savings from Energy Efficiency Programs document as follows:				
	$\overline{EF} - \overline{RE}$				
	$\frac{07}{675 \times (0.000584 - \frac{1}{575 \times (0.00058$				
	$RE \times CAPJ$				
	EFase is calculated or determined according to federal minimum standards as follows:				
	EF_{BASE} is calculated of determined according to rederar minimum standards as follows. $FF_{abs} = 0.93 - 0.00132 \text{ y V}_{abs}$				
	$EE = -0.67 - 0.0010 \times V$				
	$EF_{BASE-NEWH} = 0.07 - 0.0019 \times V_{BASE}$				
Definitions	UA _{BASE}	= Heat loss coefficient of baseline hot water heater (Btu/h-°F), calculated using			
		the equation found in "Annual Energy Savings"			
	UAFF	= Heat loss coefficient of proposed hot water heater ($Btu/h^{\circ}F$).			
	ΔΤς	= Temperature difference between stored hot water temperature and ambient			
	5	air (°F).			
	GPD	= Average daily water consumption (gallons/day)			
	ΔΤω	= Temperature difference between cold inlet temperature and hot water delivery			
		temperature in (°F). Hot water delivery temperature is assumed to be 130 °F.			
		Cold inlet/main temperature is 50.8 $^{\circ}$ F ¹²⁰			
	FERRE FRAME	= Baseline electric water heater energy factor, calculated using the equation			
	BASE-EWH	found above in "Annual Energy Savings"			
	FErrer	= Baseline non-electric water heater energy factor calculated using the equation			
	LI BASE-	found above in "Annual Energy Savings"			
	FE	= Proposed water heater energy factor			
		= Temperature difference associated with standby loss specification			
		= Thermal efficiency of baseline water beater			
		- Thermal efficiency of proposed efficient water heater			
	FC	- Compustion efficiency of baseline water beater			
		- Combustion efficiency of proposed indirect water heater holler			
		- Pinary flag to indicate whether the baseline water heater was an indirect water			
	TTPEBASE	- Binary hag to indicate whether the baseline water heater was an indirect water heater (0 if an indirect water heater; 1 if not an indirect water heater)			
	N/	- Deseline Water bester storage tenk volume (Callens) - assumed to be 40			
	VBASE	= Baseline water heater storage tank volume (Gallons) – assumed to be 40			
	DE				
	KE	= vvaler nealer recovery eniciency.			
		= vvaler heater (2 000 000 - Dtu (0 0 000 - Dtu)			
	1,000,000	= Conversion factor (1,000,000 = $Btu/IVIVIBTU$).			
	3,412	= Conversion factor (3,412 = Btu/KWN)			
	365	= Days per year.			
	8.33	= Heat content of water (Btu/gal-°F)			
	8,760	= Hours per year.			

 ¹²⁰ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.
 ¹²¹ Baseline water heater volume of 40 gallons results in conservative estimate for baseline water efficiency factor based on smallest water heater generally considered for multifamily units.
High Efficiency Water I	Heater									
EFFICIENCY ASSUMPTION	NS									
Baseline Efficiency	The baseli	ne case for r	etrofit is the	existing wat	er heating e	quipm	ent wit	h low-	flow	devices
	installed.	istalled. The baseline case for new construction/replace on burnout is a standard efficiency								
	unit of the	nit of the same type and volume.								
Efficient Measure	The efficie	ent case is the	e new high-e	efficiency wat	ter heating of	equipm	nent wi	th low	flow	/ devices
	installed.									
PARAMETER VALUES										
Measure	GPD	ΔTs	ΔT_W	EF _{EE}	ΔT_{TEST}	CA	۱P	Life (y	rs)	Cost (\$)
Water Heater – Retrofit	Table 15	65122	70.2	Table 16	70 ¹²³	Act		12 ¹²	4	504.60 ¹²⁵
Water Heater – ROB, NC		05	79.2		70	ALL	uai	13		75.69 ¹²⁶
Measure	EC_{BASE}	EC_{EE}	UA _{EE}	F	RE _{BASE}		ΤE _{BA}	SE		TE_{EE}
Water Heater	0.75	Actual	Table 17	Gas: 0.75	Electric: 0	.97	0.80	0		Actual
IMPACT FACTORS										
Measure	ISR	RR _E	RR_{D}	CFs	C	Fw		FR		SO
Storage, Indirect, and		720/128	100% ¹²⁹	ΝΔ	N	٨				
Tankless Water Heaters	100% ¹²⁷	00% ¹²⁷ 100% NA NA 11.0% ¹³⁰ 1.0% ¹³⁰								
Heat Pump Water	10070	100% ¹²⁹	100% ¹²⁹	100% ¹³¹	100	% ¹³¹	1 1	1.070		1.070
Heaters		10070	100%	10070	100	/0				

¹²⁴ NREL, National Residential Efficiency Measures Database.

¹²⁵ Per dwelling unit costs based on program data from PY 2014.

¹²² Efficiency Maine Prescriptive Path Technical Reference Manual Version 2014.1; page 14

¹²³ Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures and Efficiency Standards for Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks; Office of Energy Efficiency and Renewable Energy, Department of Energy; Federal Register / Vol. 69, No. 203 / Thursday, October 21, 2004 / Rules and Regulations; 10 CFR Part 431. <u>http://www.gpo.gov/fdsys/pkg/FR-2004-10-21/pdf/04-17732.pdf</u>

¹²⁶ Per dwelling unit costs based on total project costs from PY 2014 program data and program assumption of 15% incremental cost (same incremental cost percentage observed for high efficiency boilers).

¹²⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

¹²⁸ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu); $RR_{E} = [(RR_{ELECTRIC} \times \Delta MMBtu_{ELECTRIC}) + (RR_{FUEL} \times \Delta MMBtu_{FUEL})] / (\Delta MMBtu_{ELECTRIC} + \Delta MMBtu_{FUEL})$

¹²⁹ The measure has not yet been evaluated for demand savings. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹³⁰ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

¹³¹ Peak Coincidence Factors for this measure are embedded in the evaluated peak demand impact.

Low-Flow Faucet Aerato	or										
Last Revised Date	7/1/2015										
MEASURE OVERVIEW											
Description	This measu	ure involv	ves replaci	ng existir	ng bathroo	m and kito	chen faucet	aerators wit	h low-		
	flow (1.5 G	w (1.5 GPM) faucet aerators. Water and water heating energy are saved by reducing the									
	annual hot	t water co	onsumptic	on.							
Primary Energy Impact	Electric, Pr	opane, C	Dil, Kerose	ne, Wood	l (addition	al impacts	include: w	ater)			
Sector	Multifamil	у									
Program(s)	Multifamil	y Efficien	icy Prograi	m							
End-Use	DHW										
Decision Type	Retrofit										
DEEMED GROSS ENERGY S	AVINGS (UI	NIT SAVI	NGS)								
Demand Savings	ΔkW = 0.0	1									
Annual Energy Savings	∆kWh/yr =	80 (elec	tric water	heater o	nly)						
	∆MMBtu/	yr = 0.36	(non-elec	tric wate	r heater oi	nly)					
Annual Water Savings	∆Gallons/y	r = 3,833	3								
GROSS ENERGY SAVINGS	ALGORITHM	S (UNIT S	SAVINGS)								
Demand Savings	∆kW= (GP	M _{BASE} – G	PM_{EE}) × 60	$) \times \rho_{H20} \times$	Ср _{н20} / 3,4	$12 \times (T_{pou})$	- T _{in}) / RE _{EW}	и			
Annual Energy Savings	∆kWh/yr ∹	= ∆Gallor	ns/yr × ρ _{Η20}	_о × Ср _{н20} /	′ 3,412 × (1	Г _{рои} - Т _{іп}) /	RE _{EWH}				
	∆MMBtu/	yr =∆Ga	llons/yr ×	ρ _{н20} × Ср _н	₁₂₀ / 1,000,	000 × (T _{pot}	u - T _{in}) / RE _N	IEWH			
Annual Water Savings	∆Gallons/y	r = (GPN	И _{вазе} – GPI	M _{EE}) x t ×	365						
Definitions	Unit	= 1 low	flow devic	e							
	GPM _{BASE}	= Flow r	ate of exis	sting low	flow devic	e (GPM)					
	GPM _{EE}	= Flow r	ate of nev	v low-flov	v device (O	GPM)					
	t	= total t	ime low fl	ow devic	e is used p	er day (mi	n/day)				
	T _{pou}	= tempe	erature at	point of ι	ise (°F)						
	T _{in}	= tempe	erature of	water ma	nins (°F)						
	RE _{EWH}	= Recov	ery efficie	ncy of ele	ectric hot v	vater heat	er				
	RE _{NEWH}	= Recov	ery efficie	ncy of no	n-electric	hot water	heater				
	ρ _{H20}	= Densit	ty of wate	r: 8.33 lbs	s per gallor	าร					
	Ср _{н20}	= Specif	ic heat of	water: 1	Btu/lb/°F						
	3,412	= Conve	ersion: 3,42	12 Btu pe	r kWh						
	365	= Conve	ersion: 365	days per	year						
	60	= Conve	ersion: 60 r	minutes p	er hour						
EFFICIENCY ASSUMPTIONS	5										
Baseline Efficiency	Federal sta 1, 1994. ¹³²	andards s	set a maxir	num 2.2	GPM for fa	aucet aera	tors manuf	actured after	January		
Efficient Measure	The new lo	ow-flow f	aucet aera	ators have	e a maxim	um flow ra	ite of 1.5 G	PM. ¹³³			
PARAMETER VALUES											
Measure	GPM _{BASE}	GPM_{EE}	t	T _{pou}	T _{in}	RE_{EWH}	RE _{NEWH}	Life (yrs)	Cost (\$)		
Faucet Aerator	2.2	1.5	2.99 ¹³⁴	93 ¹³⁵	50.8 ¹³⁶	0.98 ¹³⁷	0.75 ¹³⁷	10 ¹³⁸	32.28 ¹³⁹		

¹³² Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

¹³³ http://www.epa.gov/WaterSense/docs/faucet_spec508.pdf

¹³⁴ Weighted average time per day per faucet for 1 kitchen aerator and 2.96 bathroom aerators with 2.34 people per home and usage times from The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.

¹³⁵ The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.

¹³⁶ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

¹³⁷ NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf ¹³⁸ NYSERDA Multifamily Efficiency Program, Benchmarking Tool Excel Sheet, Version 4.1.

¹³⁹ Costs based on program data from PY 2014.

Low-Flow Faucet Aerato	r						
IMPACT FACTORS							
Measure	ISR	RR _E	RR_{D}	CFs	CFw	FR	SO
Faucet Aerator	100% ¹⁴⁰	72.7% ¹⁴¹	100% ¹⁴²	0.3% ¹⁴³	0.4% ¹⁴³	$11.0\%^{144}$	$1.0\%^{144}$

¹⁴⁰ EMT assumes that all units are installed (i.e. ISR = 100%).

¹⁴¹ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu); $RR_{E} = [(RR_{ELECTRIC} \times \Delta MMBtu_{ELECTRIC}) + (RR_{FUEL} \times \Delta MMBtu_{FUEL})] / (\Delta MMBtu_{ELECTRIC} + \Delta MMBtu_{FUEL})]$

¹⁴² The measure has not yet been evaluated for demand savings. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁴³ Efficiency Maine Residential Technical Reference Manual 2014.1; Values developed based on residential hot water usage profiles from: Aquacraft, Inc., The End Uses of Hot Water in Single Family Homes from Flow Trace Analysis. Coincidence Factors for Bathroom low-flow aerator were assumed (as opposed to kitchen low-flow aerator) to assume a conservative approach to seasonal peak kW savings.

¹⁴⁴ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Low-Flow Showerheads	
Last Revised Date	7/1/2014 (added to TRM for PY15)
MEASURE OVERVIEW	·
Description	This measure involves replacing existing showerheads with low-flow (2.0 GPM) showerheads. Water and water heating energy are saved by reducing the annual hot water consumption.
Primary Energy Impact	Electric, Propane, Oil, Kerosene, Wood (additional impacts include: water)
Sector	Multifamily
Program(s)	Multifamily Efficiency Program
End-Use	DHW
Decision Type	Retrofit
DEEMED GROSS ENERGY	AVINGS (UNIT SAVINGS)
Demand Savings	ΔkW = 0.02
Annual Energy Savings	$\Delta kWh/yr = 250$ (electric water heater only)
	Δ MMBtu/yr = 1.1 (non-electric water heater only)
Annual Water Savings	Δ Gallons/yr = 2,000
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW = \Delta kWh/yr \times F_{ED}3,412$
Annual Energy Savings	$\Delta kWh/yr = \Delta Gallons/yr \times \rho_{H20} \times C_{H20} \times (T_{pou} - T_{in}) / RE_{EWH} / 3,412$
	$\Delta MMBtu/yr = \Delta Gallons/yr \times \rho_{H20} \times C_{H20} \times (T_{pou} - T_{in}) / RE_{NEWH} / 1,000,000$
Annual Water Savings	$\Delta Gallons/yr = (GPM_{BASE} - GPM_{EE}) \times N \times t \times 365$
Definitions	Unit = 1 low-flow device
	GPM _{BASE} = Flow rate of existing showerhead (GPM)
	GPM _{EE} = Flow rate of new low-flow showerhead (GPM)
	N = number of faucet uses per day (uses/day)
	t = total time low flow device is used per use (min/use)
	T _{pou} = temperature at point of use (°F)
	T _{in} = temperature of water mains (°F)
	RE _{EWH} = Recovery efficiency of electric hot water heater
	RE _{NEWH} = Recovery efficiency of non-electric hot water heater
	ρ_{H20} = Density of water: 8.33 lbs per gallons
	C _{H20} = Specific heat of water: 1 Btu/lb/°F
	3,412 = Conversion: 3,412 Btu per kWh
	365 = Conversion: 365 days per year
	60 = Conversion: 60 minutes per hour
	F _{ED} = Energy to Demand factor
EFFICIENCY ASSUMPTION	5
Baseline Efficiency	Federal standards set a maximum 2.5 GPM for faucet aerators manufactured after January 1, 1994. ¹⁴⁵
Efficient Measure	The new low-flow faucet aerators have a maximum flow rate of 2.0 GPM. ¹⁴⁶

PARAMETER VALUES

¹⁴⁵ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.
 ¹⁴⁶ <u>http://www.epa.gov/WaterSense/docs/faucet_spec508.pdf</u>

Low-Flow Showerheads												
Measure	GPM_{BASE}	GPM_{EE}		Ν		t	Tp	ou	-	T _{in}	Life (yrs)	Cost (\$)
Showerhead	2.5	2.0		1.4 ¹⁴⁷	7.8	33 ¹⁴⁸	101	149	50	.8 ¹⁵⁰	10 ¹⁵¹	32.28 ¹⁵²
Measure	F _{ED}		RI	E _{ewh}		RE NEWH	4					
Showerhead	0.000080)13 ¹⁵³	0.9	98 ¹⁵⁴		0.75 ¹⁵⁴	4					
IMPACT FACTORS												
Measure	ISR	RR	E	RR)	C	Fs		CF_W		FR	SO
Showerhead	100% ¹⁵⁵	72.79	6 ¹⁵⁶	100%	157	0.59	% ¹⁵⁸	0.	8% ¹⁵⁸	3 1	L1.0% ¹⁵⁹	1.0% ¹⁵⁹

¹⁴⁷ Based on 2.34people per home (American Community Survey, 2011 1 year estimate for population of Maine: <u>http://www.census.gov/acs/www/</u>) and 0.61 showers per person (The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group).

¹⁴⁸ The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.
¹⁴⁹ The Cadmus Group and Opinion Dynamics, MEMO: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.

¹⁵⁰ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

¹⁵¹ NYSERDA Multifamily Efficiency Program, Benchmarking Tool Excel Sheet, Version 4.1.

¹⁵² Costs based on program data from PY 2014.

¹⁵³ State of Pennsylvania, Technical Reference Manual, Rev Date: March 2015, page 126.

¹⁵⁴ NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf

¹⁵⁵ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

¹⁵⁶ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation, March 2014; using the program-wide electric and fuel realization rates determined by the evaluation report, measure-specific weighted average was calculated for each measure (based on the relative magnitude of electric and fuel savings in MMBtu);

 $RR_{E} = \left[\left(RR_{ELECTRIC} \times \Delta MMBtu_{ELECTRIC} \right) + \left(RR_{FUEL} \times \Delta MMBtu_{FUEL} \right) \right] / \left(\Delta MMBtu_{ELECTRIC} + \Delta MMBtu_{FUEL} \right)$

¹⁵⁷ The measure has not yet been evaluated for demand savings. Until the next program impact evaluation, EMT assumes 100% realization rate.

¹⁵⁸ Efficiency Maine Residential Technical Reference Manual 2014.1; Values developed based on residential hot water usage profiles from: Aquacraft, Inc., The End Uses of Hot Water in Single Family Homes from Flow Trace Analysis.

¹⁵⁹ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Multifamily Custom	Fast Track									
Last Revised Date	7/1/2014 (ad	ded to TRM fo	or PY:	15)						
MEASURE OVERVIEW										
Description	The custom F contractors to efficiency me energy consu	The custom Fast Track path for Multifamily Efficiency Program projects allows program contractors to use TREAT to estimate the energy-efficiency savings for bundled energy-efficiency measures. A successful MEP custom Fast Track project must reduce total annual energy consumption by at least 20% compared to baseline annual energy consumption.								
Primary Energy Impact	Electricity, Na	lectricity, Natural Gas, Oil, Propane								
Sector	Multifamily	Iultifamily								
Program(s)	Multifamily E	fficiency Prog	ram ((Custom)						
End-Use	Heating, Cool	eating, Cooling, DHW, Lighting, Appliances								
Decision Type	Retrofit, New	etrofit, New Construction, Replace on Burnout								
DEEMED GROSS ENERG	GY SAVINGS (U	SAVINGS (UNIT SAVINGS)								
Demand savings	Demand savi	ngs are based	on p	roject spe	cific da	ta.				
Annual energy savings	Energy saving	inergy savings are based on project specific data.								
GROSS ENERGY SAVIN	GS ALGORITHN	S ALGORITHMS (UNIT SAVINGS)								
Demand savings	Approved im	plementation	cont	ractors es	timate	energy	and dem	and s	savings using	the Targeted
Annual energy	Retrofit Ener	gy Analysis To	ol (Tf	REAT) mo	deling s	oftwar	e. Contra	ctors	use the mod	leling
savings	software to p energy-efficie	roject the anr ency measures	nual e 5.	energy sav	vings ar	nd dem	and savin	gs ac	hieved by th	e selected
Definitions	Unit MMBTU _{PRE} ∆MMBTU	 = 1 project = Baseline ar installed = Annual ene using TREA 	inual ergy s T bui	energy co avings aff Iding mod	onsump ter enei deling so	otion be rgy-effi oftware	efore ener ciency me	rgy-e easur	fficiency me es are instal	asures are ed, estimated
EFFICIENCY ASSUMPTI	ONS	-		-						
Baseline Efficiency	The baseline equipment. T consumption	scenario is the he baseline ei for the buildi	e exis nergy ng.	ting mult / consum	ifamily otion is	buildin charac	g with all terized by	exist the	ing systems normalized a	and actual energy
Efficient Measure	The efficient	measure invol	ves r	nultiple e	nergy-e	efficien	cy measui	res th	nat reduce th	e baseline
	energy consu	mption by at	east	20%.						
PARAMETER VALUES (DEEMED)									
Measure/Type		ΔΜΜΒΤ	U	ΔkW	/h	Δ	kW	L	ife (yrs)	Cost (\$)
Custom Model	Actual	Model		Moc	lel	М	odel	٦	able 18	Actual
IMPACT FACTORS	•			•					1	
Measure/Type	ISR	RR _E		RR _D	C	Fs	CFw		FR	SO
Custom Model	100%	73% ¹⁶⁰	1	00% ¹⁶³	Custo	om ¹⁶¹	Custom	164	11.0% ¹⁶²	1.0% ¹⁶⁵

¹⁶⁰ Weighted average of Fossil Fuel and Electric Realization Rates based on the respective magnitude of Ex Post Gross Savings; Realization Rates and Ex Post Gross Savings are retrieved from: Table 1-1. Annual Program-Level Ex Ante and Ex Post Gross Impacts, Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program ¹⁶¹ Dependent on measure type; See Table 2. Multifamily Measures Coincidence Factors and Energy Period Factors.
 ¹⁶² Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Multifamily Custom	Modeling											
Last Revised Date	7/1/2014 (a	dded to TRN	∕I fo	or PY15)								
MEASURE OVERVIEW												
Description	The custom contractors including int project mus annual ener	The custom modeling path for Multifamily Efficiency Program projects allows program contractors to use building energy simulation tools estimate the energy-efficiency savings, including interactive effects, for bundled energy-efficiency measures. A successful MEP custom project must reduce total annual energy consumption by at least 20% compared to baseline innual energy consumption.										
Primary Energy Impact	Electricity, N	ectricity, Natural Gas, Oil, Propane										
Sector	Multifamily	ultifamily										
Program(s)	Multifamily	ultifamily Efficiency Program (Custom)										
End-Use	Heating, Coo	ating, Cooling, DHW, Lighting, Appliances										
Decision Type	Retrofit, Nev	trofit, New Construction, Replace on Burnout										
DEEMED GROSS ENERG	GY SAVINGS (UNIT SAVIN	GS))								
Demand savings	Demand sav	ings are bas	sed	on proje	ct spe	cific da	ta.					
Annual energy savings	Energy savir	nergy savings are based on project specific data.										
GROSS ENERGY SAVIN	GS ALGORITH	S ALGORITHMS (UNIT SAVINGS)										
Demand savings	Approved in	nplementati	on	contracto	ors es	timate	energy	and der	mand s	avir	ngs using th	e Targeted
Annual energy	Retrofit Ene	rgy Analysis	То	ol (TREAT) mo	deling s	oftwar	e. Contr	ractors	use	the model	ing
savings	software to energy-effic	project the iency measu	anr ires	nual ener s.	gy sav	ings ar	nd dem	and savi	ings acł	hiev	ed by the s	elected
Definitions	Unit MMBTU _{PRE} ∆MMBTU	= 1 projec = Baseline installec = Annual using TR	t e ar l ene EA	nnual ene ergy savin T building	rgy co gs afi g mod	onsump ter ener deling so	otion be rgy-effi oftware	efore en ciency n e.	nergy-ef measure	fficio es a	ency measi re installec	ures are , estimated
EFFICIENCY ASSUMPTI	ONS				-							
Baseline Efficiency	The baseline equipment. consumption	e scenario is The baselin n for the bu	the e ei ildii	e existing nergy cor ng.	mult Isum	ifamily otion is	buildin charac	g with a terized l	all existi by the i	ing s nori	systems an malized act	d ual energy
Efficient Measure	The efficient energy cons	: measure ir umption by	ivo at	lves mult least 20%	iple e	nergy-e	efficien	cy meas	sures th	nat r	educe the	baseline
PARAMETER VALUES (DEEMED)											
Measure/Type	MMBTU _P	ΔΜΜΒΤυ	1	∆kWh	Δ	kW					Life (yrs)	Cost (\$)
Custom Model	Actual	Model	1	Model	Μ	odel					Table 18	Actual
IMPACT FACTORS												
Measure/Type	ISR	RR _E		RR _D		С	Fs	CF	w		FR	SO
Custom Model	100%	73% ¹⁶³		100%	163	Custo	om ¹⁶⁴	Custo	om ¹⁶⁴	1	1.0% ¹⁶⁵	$1.0\%^{165}$

¹⁶³ Weighted average of Fossil Fuel and Electric Realization Rates based on the respective magnitude of Ex Post Gross Savings; Realization Rates and Ex Post Gross Savings are retrieved from: Table 1-1. Annual Program-Level Ex Ante and Ex Post Gross Impacts, Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program ¹⁶⁴ Dependent on measure type; See Table 2. Multifamily Measures Coincidence Factors and Energy Period Factors.
 ¹⁶⁵ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Appendix A: Glossary

Definitions are based primarily on the Northeast Energy Efficiency Partnerships (NEEP), Regional Evaluation, Measurement & Verification (EMV) Forum, Glossary of Terms, Version 2.0 (PAH Associates, March 2011), cited at the end of each definition as: [NEEP EMV Glossary].

Adjusted Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated. It adjusts for such factors as data errors, installation and persistence rates and hours of use, but does not adjust for free ridership or spillover. This can be calculated as an annual or lifetime value. [NEEP EMV Glossary]

Actual: Actual means the project specific value that is recorded in the Project Application/Documentation for this measure.

Algorithm: An equation or set of equations, more broadly a method, used to calculate a number. In this case, it is an estimate of energy use or energy savings tied to operation of a piece of equipment or a system of interacting pieces of equipment. An algorithm may include certain standard numerical assumptions about some relevant quantities, leaving the user to supply other data to calculate the use or savings for the particular measure or equipment. [NEEP EMV Glossary]

Annual Demand Savings: The maximum reduction in electric or gas demand in a given year within defined boundaries. The demand reduction is typically the result of the installation of higher efficiency equipment, controls, or behavioral change. The term can be applied at various levels, from individual projects to energy efficiency programs, to overall program portfolios. [NEEP EMV Glossary]

Annual Energy Savings: The reduction in electricity usage (kWh) or in fossil fuel use in thermal unit(s) from the savings associated with an energy saving measure, project, or program in a given year. [NEEP EMV Glossary]

Average Annual Operating Hours: The annual hours that equipment is expected to operate.

Baseline Efficiency: The assumed efficiency condition of the baseline equipment that is being replaced by the subject energy efficiency measure. It is used to determine the energy savings obtained by the more efficient measure. [NEEP EMV Glossary, edited]

Btu: The standard measure of heat energy. It takes one Btu to raise the temperature of one pound of water one degree Fahrenheit from 58.5 to 59.5 degrees under standard pressure of 30 inches of mercury at or near its point of maximum density. [NEEP EMV Glossary]

Coincident Demand: The demand of a device, circuit or building that occurs at the same time as the peak demand of a system load or some other peak of interest. The peak of interest should be specified. [NEEP EMV Glossary]

Coincidence Factor (CF): The ratio of the average hourly demand during a specified period of time of a group of measures to the sum of their individual maximum demands (or connected loads) within the same period. [NEEP EMV Glossary, edited]

Deemed Savings: An estimate of energy or demand savings for a single unit of an installed energy efficiency measure that (a) has been developed from data sources and analytical methods that are widely considered acceptable for the measure and purpose, and (b) is applicable to the situation being evaluated. A measure with deemed savings will have

the same savings per unit. Individual parameters used to calculate savings and/or savings calculation methods can also be deemed. [NEEP EMV Glossary, edited]

Delta Watts: The difference in the wattage between existing or baseline equipment and its more efficient replacement or installation at a specific time, expressed in watts or kilowatts. [NEEP EMV Glossary]

Demand: The time rate of energy flow. Demand usually refers to the amount of electric energy used by a customer or piece of equipment at a specific time, expressed in kilowatts (kW). [NEEP EMV Glossary]

ENERGY STAR®: A joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy designed to reduce energy use and the impact on the environment. The Energy Star label is awarded to products that meet applicable energy efficiency guidelines and to homes and commercial buildings that meet specified energy efficiency standards. [NEEP EMV Glossary]

Free Rider: A program participant who would have implemented the program measure or practice in the absence of the program. Free riders can be: 1) total, in which the participant's activity would have completely replicated the program measure; 2) partial, in which the participant's activity would have partially replicated the program measure; or 3) deferred, in which the participant's activity would have completely replicated the program measure; but at a future time than the program's timeframe. [NEEP EMV Glossary]

Free Ridership Rate (FR): The percent of energy savings through an energy efficiency program attributable to free riders. [NEEP EMV Glossary, edited]

Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated and unadjusted by any factors. [NEEP EMV Glossary]

Hours of Use (HOU) or Operating Hours: The average number of hours a measure is in use during a specified time period, typically a day or a year. [NEEP EMV Glossary]

Incremental Cost: The difference between the cost of existing or baseline equipment/service and the cost of energy efficient equipment/service. [NEEP EMV Glossary]

In-Service Rate (ISR): The percentage of energy efficiency measures incented by a program that are actually installed and operating. The in-service rate is calculated by dividing the number of measures installed and operating by the number of measures incented by an efficiency program in a defined period of time. [NEEP EMV Glossary]

Kilowatt (kW): A measure of the rate of power used during a preset time period (e.g. minutes, hours, days or months) equal to 1,000 watts. [NEEP EMV Glossary]

Kilowatt-Hour (kWh): A common unit of electric energy; one kilowatt-hour is numerically equal to 1,000 watts used for one hour. [NEEP EMV Glossary]

Lifetime Energy Savings: The energy savings over the lifetime of an installed measure calculated by multiplying the annual energy usage reduction associated with a measure by the expected lifetime of the measure. [NEEP EMV Glossary, edited]

Measure Life: The length of time that a measure is expected to be functional. Measure Life is a function of: (1) *equipment life* means the number of years that a measure is installed and will operate until failure; and (2) *measure persistence* takes into account business turnover, early retirement of installed equipment and other reasons measures might be removed or discontinued. Measure Life is sometimes referred to as expected useful life (EUL). [NEEP EMV Glossary]

Meter Level Savings: Savings from energy efficiency programs that are at the customer meter or premise level. [NEEP EMV Glossary]

Net Savings: The savings that is attributable to an energy efficiency program. Net savings differs from gross savings because it includes the effects of the free-ridership and/or spillover rates.

Net-to-Gross Ratio (NTGR): The ratio of net savings to gross savings. The NTGR may be determined from the freeridership and spillover rates (NTGR=1-FR+SO), if available, or it may be a distinct value relating gross savings to the net effect of the program with no separate specification of FR and SO values; it can be applied separately to either energy or demand savings.

Realization Rate (RR): The ratio of savings adjusted for data errors and for evaluated or verified results (verified) to program tracking system savings data (e.g. initial estimates of project savings).

Seasonal Energy Efficiency Ratio (SEER): The total cooling output of a central AC unit in Btus during its normal usage period for cooling divided by the total electrical energy input in watt-hours during the same period, as determined using specified federal test procedures. [NEEP EMV Glossary]

Spillover: Reductions in energy consumption and/or demand caused by the presence of an energy efficiency program, beyond the program-related gross savings of the participants and without financial or technical assistance from the program. There can be participant and/or non-participant spillover. *Participant spillover* is the additional energy savings that occur when a program participant independently installs energy efficiency measures or applies energy saving practices after having participated in the efficiency program as a result of the program's influence. *Non-participant spillover* refers to energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings practices as a result of a program's influence. [NEEP EMV Glossary]

Spillover Rate (SO): Estimate of energy savings attributable to spillover effects expressed as a percent of savings installed by participants through an energy efficiency program. [NEEP EMV Glossary]

Appendix B: Load Shapes and Coincidence Factors

Appendix B: Load Shapes and Coincidence Factors

		Coincidence	e Factor (CF)	En	ergy Period	PF)	Footnote Reference		
Measure Name	End-Use	Winter	Summer	Win	ter	Sun	nmer	05	505
		On-Peak	On-Peak	Peak	Off Peak	Peak	Off Peak	CF	EPF
Lighting Fixtures – Interior Spaces	Lighting	63.0%	76.0%	50.0%	19.0%	23.0%	9.0%	166	167
Lighting Fixtures – LED Exit Signs	Lighting	100.0%	100.0%	30.4%	36.2%	15.6%	17.9%	168	168
Lighting Fixtures – Exterior Spaces	Lighting	70.2%	3.7%	20.5%	50.6%	6.1%	22.8%	169	169
Lighting Controls – Interior Spaces	Lighting	12.0%	18.0%	50.0%	19.0%	23.0%	9.0%	170	167
Custom	Heating, Cooling, Domestic Hot Water	Custom	Custom	58.4%	33.8%	3.6%	4.1%	171	172
Air Sealing	Heating, Cooling	79.6%	10.2%	58.4%	33.8%	3.6%	4.1%		173
Boiler Control	Heating	NA	NA	NA	NA	NA	NA		174
Programmable Thermostats	Heating	NA	NA	58.4%	33.8%	3.6%	4.1%		173
Boiler or Furnace Retrofit/Replacement	Heating	NA	NA	NA	NA	NA	NA		174
Wall Insulation	Heating, Cooling	79.6%	10.2%	58.4%	33.8%	3.6%	4.1%		173
Floor Insulation	Heating, Cooling	79.6%	10.2%	58.4%	33.8%	3.6%	4.1%		173
Attic/Roof Insulation	Heating, Cooling	79.6%	10.2%	58.4%	33.8%	3.6%	4.1%		173

Table 2. Multifamily Measures Coincidence Factors and Energy Period Factors

 ¹⁶⁶ KEMA, C&I Lighting Load Shape Project FINAL Report, July 2011.
 ¹⁶⁷ Central Maine Power, Non-residential load profile for 3/1/08-2/28/09

¹⁶⁸ Values are based on continuous operation. For energy period factors, values may assume that energy savings are evenly distributed across all hours of the year.

¹⁶⁹ Efficiency Vermont TRM 2012, Commercial Outdoor Lighting

¹⁷⁰ The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

¹⁷¹ Winter and Summer Peak demand are project specific based on modeling

¹⁷² The majority of custom projects will have the greatest impact on heating and cooling; therefore the energy period factors are set to the same as for ductless heat pump.

¹⁷³ The measure's savings follow the heating and cooling consumption loadshape. Therefore, the coincidence factors and energy period factors for the measure are assumed to be the same as the coincidence factors for the heat pump measure.

¹⁷⁴ Coincidence Factors and Energy Period Factors are not tracked for non-electric measures.

Appendix B: Load Shapes and Coincidence Factors

Massura Nama	End Lico	Coincidence	e Factor (CF)	En	ergy Period	'F)	Footnote Reference		
Measure Name	End-Ose	Winter	Summer	Win	iter	Sun	nmer	CF	EPF
Low-Flow Faucet Aerator	Domestic Hot Water	0.3%	0.4%	39.7%	26.8%	20.3%	13.1%		175
Low-Flow Showerhead	Domestic Hot Water	0.8%	0.5%	35.5%	31.1%	18.1%	15.3%		176
Smart Pump with ECM Motor	Heating	100.0%	0.0%	53.6%	46.3%	0.0%	0.1%	177	178
Ductless Heat Pump New Construction	Heating, Cooling	32.4%	3.0%	57.4%	36.9%	2.6%	3.1%		179
Ductless Heat Pump Retrofit Income Eligible	Heating, Cooling	69.5%	0.0%	58.0%	34.5%	3.4%	4.1%		180
Indirect/Tankless/Storage Type Water Heaters	Domestic Hot Water	NA	NA	NA	NA	NA	NA		174
Heat Pump Water Heaters	Domestic Hot Water	100.0%	100.0%	35.8%	30.8%	17.9%	15.5%	181	182

¹⁷⁵ Efficiency Maine Residential Technical Reference Manual 2014.1; Values developed based on residential hot water usage profiles from: Aquacraft, Inc., The End Uses of Hot Water in Single Family Homes from Flow Trace Analysis. Coincidence Factors for Bathroom low-flow aerator were assumed (as opposed to kitchen low-flow aerator) to assume a conservative approach to seasonal peak kW savings.

¹⁷⁶ Ibid.; analysis for low-flow showerheads

¹⁷⁷ Summer Coincidence Factor is not applicable to this measure; Winter Coincidence Factor is embedded in the demand savings calculated using the algorithm provided.

¹⁷⁸ As referenced in Efficiency Maine Commercial Technical Reference Manual v2015.1; Efficiency Vermont TRM 2012. Values used for VFDs on VFD Boiler Feedwater Pumps, 10 HP; VFD Chilled Water Pumps, <10 HP; VFD Supply Fans, <10 HP; VFD Returns Fans, <10 HP; and VFD Exhaust Fans, <10 HP

¹⁷⁹ Values developed based on the bin analysis calculations for DHP savings using typical annual hours in each weather bin during each demand and energy period.

¹⁸⁰ Values developed based on the bin analysis calculations for DHP retrofit savings using typical annual hours in each weather bin during each demand and energy period.

¹⁸¹ Coincidence Factors are embedded in the seasonal demand savings provided in the measure entry.

¹⁸² As referenced in Efficiency Maine Residential Technical Reference Manual v2015.1; Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

Appendix C: Carbon Dioxide Emission Factors

Appendix C: Carbon Dioxide Emission Factors

Fuel	Pounds of CO2 per ¹⁸³	Unit
Petrolet	um Products	
Distillate Fuel (No. 1, No. 2, No. 4, Fuel Oil and	22.384	per gallon
Diesel)		
Jet Fuel	21.095	per gallon
Kerosene	21.537	per gallon
Liquefied Petroleum Gases	12.805	per gallon
Motor Gasoline	19.564	per gallon
Petroleum Coke	32.397	per gallon
Petroleum Coke	6768.667	per short ton
Residual Fuel(No.5 and No. 6 Fuel oil)	26.033	per gallon
Natural Gas and	Other Gaseous Fuels	
Methane	116.375	per 1000 ft3
Landfill Gas	Multiple methane factor by the	per 1000 ft3
	share of the landfill gas methane	
Flare Gas	133.759	per 1000 ft3
Natural Gas (pipeline)	120.593	per 1000 ft3
Propane	12.669	per gallon
	Coal	
Anthracite	5685	per short ton
Bituminous	4931.30	per short ton
Sub bituminous	3715.90	per short ton
Lignite	2791.60	per short ton
	Other	
Wind	0	
Photovoltaic and Solar Thermal	0	
Tires/Tire – Derived Fuel	6160	per short ton
Wood and Wood Waste	0	
Municipal Solid Waste	0	
Electricity ¹⁸⁴	1.0262	Pounds per kWh

 ¹⁸³ From the Energy Information Administration: http://www.eia.doe.gov/oiaf/1605/coefficients.html
 ¹⁸⁴ From Avoided Energy Supply Cost in New England, 2013, Synapse Energy Economics Inc.

Appendix D: Supporting Tables for Multifamily Measures

HVAC System	Savings Factor	Zone 1	Zone 2	Zone 3				
	EESF _{LR}	1.3	1.0	1.5				
AC with Gas, Propane, Oil, Kerosene or Wood Heat	DSF _{LR}	0.0	0.0	0.0				
Refuserie of wood field	HFSF _{LR}	2.7	2.3	2.5				
	EESF _{LR}	44.5	31.2	32.7				
Heat Pump	DSF _{LR}	0.0	0.0	0.0				
	HFSF _{LR}	0.0	0.0	0.0				
	EESF _{LR}	44.6	36.6	40.2				
AC with Electric Heat	DSF _{LR}	0.0	0.0	0.0				
	HFSF _{LR}	0.0	0.0	0.0				
Gas, Propane, Oil,	EESF _{LR}	1.2	1.1	1.6				
Kerosene, or Wood Heat,	DSF _{LR}	0.0	0.0	0.0				
No AC	HFSF _{LR}	2.7	2.3	2.5				
	EESF _{LR}	44.5	36.7	40.3				
Electric Heat, No AC	DSF _{LR}	0.0	0.0	0.0				
	HFSF _{LR}	0.0	0.0	0.0				
See Table 5. Weather Zones for Air Sealing Measure to find the								
appropriate weather zone for	r specific location).						

Table 3. Saving	s Factors for	Air Sealing	in Low Rise	e Buildings ¹⁸⁵
Table J. Javing	5 1 4 1 1 5 1 0 1	All Jeaning		e Dununigs

Zone	Vintage	EESF _{HR}	DSF _{HR}	HFSF _{HR}							
70no 1	Old	68	0.101	34							
Zone I	Average	20	0.079	19							
7000 3	Old	66	0.127	30							
zone z	Average	20	0.098	17							
7000 2	Old	64	0.116	33							
Zone 3	Average	11	0.085	17							
See Table 5. Weather Zones for Air Sealing Measure											
to find the a	ppropriate w	eather zoi	ne for spec	cific							
location.											

 Table 4. Savings Factors for Air Sealing in High Rise Buildings

¹⁸⁵ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, New York Evaluation Advisory Contractor Team & TecMarket Works, October 15, 2010; Appendix E, Pg #394-395; Zone 1 mapped to Buffalo, NY, Zone 2 mapped to Massena, NY, and Zone 3 mapped to Binghamton, NY. ¹⁸⁶ Ibid.

	ZONE 1 LOCA	TIONS		ZONE 2 LOCATIO	NS		ZONE 3 LOCATIO	ONS
Zip Code	City	County	Zip Code	City	County	Zip Code	City	County
04210	Auburn	Androscoggin	04003	Bailey Island	Cumberland	04225	Dryden	Franklin
04211	Auburn	Androscoggin	04009	Bridgton	Cumberland	04227	East Dixfield	Franklin
04212	Auburn	Androscoggin	04011	Brunswick	Cumberland	04234	East Wilton	Franklin
04222	Durham	Androscoggin	04013	Bustins Island	Cumberland	04239	Jay	Franklin
04223	Danville	Androscoggin	04015	Casco	Cumberland	04262	North Jay	Franklin
04228	East Livermore	Androscoggin	04017	Chebeague Island	Cumberland	04285	Weld	Franklin
04230	East Poland	Androscoggin	04019	Cliff Island	Cumberland	04294	Wilton	Franklin
04236	Greene	Androscoggin	04021	Cumberland Center	Cumberland	04936	Eustis	Franklin
04240	Lewiston	Androscoggin	04024	East Baldwin	Cumberland	04938	Farmington	Franklin
04241	Lewiston	Androscoggin	04029	Sebago	Cumberland	04940	Farmington Falls	Franklin
04243	Lewiston	Androscoggin	04032	Freeport	Cumberland	04947	Kingfield	Franklin
04250	Lisbon	Androscoggin	04033	Freeport	Cumberland	04955	New Sharon	Franklin
04252	Lisbon Falls	Androscoggin	04034	Freeport	Cumberland	04956	New Vineyard	Franklin
04253	Livermore	Androscoggin	04038	Gorham	Cumberland	04964	Oquossoc	Franklin
04254	Livermore Falls	Androscoggin	04039	Gray	Cumberland	04966	Phillips	Franklin
04256	Mechanic Falls	Androscoggin	04040	Harrison	Cumberland	04970	Rangeley	Franklin
04258	Minot	Androscoggin	04050	Long Island	Cumberland	04982	Stratton	Franklin
04263	Leeds	Androscoggin	04055	Naples	Cumberland	04983	Strong	Franklin
04266	North Turner	Androscoggin	04057	North Bridgton	Cumberland	04984	Temple	Franklin
04274	Poland	Androscoggin	04062	Windham	Cumberland	04992	West Farmington	Franklin
04280	Sabattus	Androscoggin	04066	Orrs Island	Cumberland	04408	Aurora	Hancock
04282	Turner	Androscoggin	04069	Pownal	Cumberland	04416	Bucksport	Hancock
04288	West Minot	Androscoggin	04070	Scarborough	Cumberland	04420	Castine	Hancock
04291	West Poland	Androscoggin	04071	Raymond	Cumberland	04421	Castine	Hancock
04471	Orient	Aroostook	04074	Scarborough	Cumberland	04431	East Orland	Hancock
04497	Wytopitlock	Aroostook	04075	Sebago Lake	Cumberland	04472	Orland	Hancock
04730	Houlton	Aroostook	04077	South Casco	Cumberland	04476	Penobscot	Hancock
04732	Ashland	Aroostook	04078	South Freeport	Cumberland	04605	Ellsworth	Hancock
04733	Benedicta	Aroostook	04079	Harpswell	Cumberland	04607	Gouldsboro	Hancock
04734	Blaine	Aroostook	04082	South Windham	Cumberland	04609	Bar Harbor	Hancock
04735	Bridgewater	Aroostook	04084	Standish	Cumberland	04612	Bernard	Hancock
04736	Caribou	Aroostook	04085	Steep Falls	Cumberland	04613	Birch Harbor	Hancock
04737	Clayton Lake	Aroostook	04091	West Baldwin	Cumberland	04614	Blue Hill	Hancock
04738	Crouseville	Aroostook	04092	Westbrook	Cumberland	04616	Brooklin	Hancock

Table 5. Weather Zones for Air Sealing Measure

	ZONE 1 LOCAT	LIONS		ZONE 2 LOCATIO	NS		ZONE 3 LOCATIO	ONS
Zip Code	City	County	Zip Code	City	County	Zip Code	City	County
04739	Eagle Lake	Aroostook	04096	Yarmouth	Cumberland	04617	Brooksville	Hancock
04740	Easton	Aroostook	04097	North Yarmouth	Cumberland	04624	Corea	Hancock
04741	Estcourt Station	Aroostook	04098	Westbrook	Cumberland	04625	Cranberry Isles	Hancock
04742	Fort Fairfield	Aroostook	04101	Portland	Cumberland	04627	Deer Isle	Hancock
04743	Fort Kent	Aroostook	04102	Portland	Cumberland	04629	East Blue Hill	Hancock
04744	Fort Kent Mills	Aroostook	04103	Portland	Cumberland	04634	Franklin	Hancock
04745	Frenchville	Aroostook	04104	Portland	Cumberland	04635	Frenchboro	Hancock
04746	Grand Isle	Aroostook	04105	Falmouth	Cumberland	04640	Hancock	Hancock
04747	Island Falls	Aroostook	04106	South Portland	Cumberland	04642	Harborside	Hancock
04750	Limestone	Aroostook	04107	Cape Elizabeth	Cumberland	04644	Hulls Cove	Hancock
04751	Limestone	Aroostook	04108	Peaks Island	Cumberland	04646	Islesford	Hancock
04756	Madawaska	Aroostook	04109	Portland	Cumberland	04650	Little Deer Isle	Hancock
04757	Mapleton	Aroostook	04110	04110 Cumberland Cumberland 04653 Bass Har		Bass Harbor	Hancock	
04758	Mars Hill	Aroostook	04112	Portland	Cumberland	04660	Mount Desert	Hancock
04760	Monticello	Aroostook	04116	South Portland	Cumberland	04662	Northeast Harbor	Hancock
04761	New Limerick	Aroostook	04122	Portland	Cumberland	04664	Sullivan	Hancock
04762	New Sweden	Aroostook	04123	Portland	Cumberland	04669	Prospect Harbor	Hancock
04763	Oakfield	Aroostook	04124	24 Portland Cumberland 04672 Sal		Salsbury Cove	Hancock	
04764	Oxbow	Aroostook	04260	New Gloucester	Cumberland	04673	Sargentville	Hancock
04766	Perham	Aroostook	03902	Cape Neddick	York	04674	Seal Cove	Hancock
04768	Portage	Aroostook	03903	Eliot	York	04675	Seal Harbor	Hancock
04769	Presque Isle	Aroostook	03904	Kittery	York	04676	Sedgwick	Hancock
04772	Saint Agatha	Aroostook	03905	Kittery Point	York	04677	Sorrento	Hancock
04773	Saint David	Aroostook	03906	North Berwick	York	04679	Southwest Harbor	Hancock
04774	Saint Francis	Aroostook	03907	Ogunquit	York	04681	Stonington	Hancock
04775	Sheridan	Aroostook	03908	South Berwick	York	04683	Sunset	Hancock
04776	Sherman	Aroostook	03909	York	York	04684	Surry	Hancock
04779	Sinclair	Aroostook	03910	York Beach	York	04685	Swans Island	Hancock
04780	Smyrna Mills	Aroostook	03911	York Harbor	York	04693	Winter Harbor	Hancock
04781	Wallagrass	Aroostook	04001	Acton	York	04259	Monmouth	Kennebec
04783	Stockholm	Aroostook	04002	Alfred	York	04265	North Monmouth	Kennebec
04785	Van Buren	Aroostook	04004	Bar Mills	York	04284	Wayne	Kennebec
04786	Washburn	Aroostook	04005	Biddeford	York	04330	Augusta	Kennebec
04787	Westfield	Aroostook	04006	Biddeford Pool	York	04332	Augusta	Kennebec

	ZONE 1 LOCA	TIONS		ZONE 2 LOCATIO	NS		ZONE 3 LOCATIO	ONS
Zip Code	City	County	Zip Code	City	County	Zip Code	City	County
04010	Brownfield	Oxford	04007	Biddeford	York	04333	Augusta	Kennebec
04016	Center Lovell	Oxford	04014	Cape Porpoise	York	04336	Augusta	Kennebec
04022	Denmark	Oxford	04020	Cornish	York	04338	Augusta	Kennebec
04037	Fryeburg	Oxford	04027	Lebanon	York	04343	East Winthrop	Kennebec
04041	Hiram	Oxford	04028	East Parsonsfield	York	04344	Farmingdale	Kennebec
04051	Lovell	Oxford	04030	East Waterboro	York	04345	Gardiner	Kennebec
04068	Porter	Oxford	04042	Hollis Center	York	04346	Randolph	Kennebec
04088	Waterford	Oxford	04043	Kennebunk	York	04347	Hallowell	Kennebec
04216	Andover	Oxford	04046	Kennebunkport	York	04349	Kents Hill	Kennebec
04217	Bethel	Oxford	04047	Parsonsfield	York	04350	Litchfield	Kennebec
04219	Bryant Pond	Oxford	04048	Limerick	York	04351	Manchester	Kennebec
04220	Buckfield	Oxford	04049	Limington	York	04352	Mount Vernon	Kennebec
04221	Canton	Oxford	04054	Moody	York	04355	Readfield	Kennebec
04224	Dixfield	Oxford	04056	Newfield	York	04358	South China	Kennebec
04226	East Andover	Oxford	04061	North Waterboro	York	04359	South Gardiner	Kennebec
04231	Stoneham	Oxford	04063	Ocean Park	York	04360	Vienna	Kennebec
04237	Hanover	Oxford	04064	Old Orchard Beach	York	04363	Windsor	Kennebec
04238	Hebron	Oxford	04072	Saco	York	04364	Winthrop	Kennebec
04255	Greenwood	Oxford	04073	Sanford	York	04901	Waterville	Kennebec
04257	Mexico	Oxford	04076	Shapleigh	York	04903	Waterville	Kennebec
04261	Newry	Oxford	04083	Springvale	York	04910	Albion	Kennebec
04267	North Waterford	Oxford	04087	Waterboro	York	04917	Belgrade	Kennebec
04268	Norway	Oxford	04090	Wells	York	04918	Belgrade Lakes	Kennebec
04270	Oxford	Oxford	04093	Buxton	York	04926	China Village	Kennebec
04271	Paris	Oxford	04094	West Kennebunk	York	04927	Clinton	Kennebec
04275	Roxbury	Oxford	04095	West Newfield	York	04935	East Vassalboro	Kennebec
04276	Rumford	Oxford				04962	North Vassalboro	Kennebec
04278	Rumford Center	Oxford				04963	Oakland	Kennebec
04281	South Paris	Oxford				04989	Vassalboro	Kennebec
04286	West Bethel	Oxford				04547	Friendship	Knox
04289	West Paris	Oxford				04563	Cushing	Knox
04290	Peru	Oxford				04574	Washington	Knox
04292	Sumner	Oxford				04645	Isle Au Haut	Knox
04401	Bangor	Penobscot				04841	Rockland	Knox
04402	Bangor	Penobscot				04843	Camden	Knox
04410	Bradford	Penobscot				04846	Glen Cove	Knox

	ZONE 1 LOCAT	TIONS		ZONE 2 LOCATIO	NS		ZONE 3 LOCATIO	ONS
Zip Code	City	County	Zip Code	City	County	Zip Code	City	County
04411	Bradley	Penobscot				04847	Норе	Knox
04412	Brewer	Penobscot				04851	Matinicus	Knox
04417	Burlington	Penobscot				04853	North Haven	Knox
04418	Greenbush	Penobscot				04854	Owls Head	Knox
04419	Carmel	Penobscot				04855	Port Clyde	Knox
04422	Charleston	Penobscot				04856	Rockport	Knox
04427	Corinth	Penobscot				04858	South Thomaston	Knox
04428	Eddington	Penobscot				04859	Spruce Head	Knox
04429	Holden	Penobscot				04860	Tenants Harbor	Knox
04430	East Millinocket	Penobscot				04861	Thomaston	Knox
04434	Etna	Penobscot				04862	Union	Knox
04435	Exeter	Penobscot				04863	Vinalhaven	Knox
04444	Hampden	Penobscot				04864	Warren	Knox
04448	Howland	Penobscot				04865	West Rockport	Knox
04449	Hudson	Penobscot				04341	Coopers Mills	Lincoln
04450	Kenduskeag	Penobscot				04342	Dresden	Lincoln
04451	Kingman	Penobscot				04348	Jefferson	Lincoln
04453	Lagrange	Penobscot				04353	Whitefield	Lincoln
04455	Lee	Penobscot				04535	Alna	Lincoln
04456	Levant	Penobscot				04537	Boothbay	Lincoln
04457	Lincoln	Penobscot				04538	Boothbay Harbor	Lincoln
04459	Mattawamkeag	Penobscot				04539	Bristol	Lincoln
04460	Medway	Penobscot				04541	Chamberlain	Lincoln
04461	Milford	Penobscot				04543	Damariscotta	Lincoln
04462	Millinocket	Penobscot				04544	East Boothbay	Lincoln
04467	Olamon	Penobscot				04549	Isle Of Springs	Lincoln
04468	Old Town	Penobscot				04551	Bremen	Lincoln
04469	Orono	Penobscot				04553	Newcastle	Lincoln
04473	Orono	Penobscot				04554	New Harbor	Lincoln
04474	Orrington	Penobscot				04555	Nobleboro	Lincoln
04475	Passadumkeag	Penobscot				04556	Edgecomb	Lincoln
04487	Springfield	Penobscot				04558	Pemaquid	Lincoln
04488	Stetson	Penobscot				04564	Round Pond	Lincoln
04489	Stillwater	Penobscot				04568	South Bristol	Lincoln
04493	West Enfield	Penobscot				04570	Squirrel Island	Lincoln
04495	Winn	Penobscot				04571	Trevett	Lincoln

	ZONE 1 LOCAT	ΓΙΟΝS		ZONE 2 LOCATIO	NS		ZONE 3 LOCATIO	ONS
Zip Code	City	County	Zip Code	City	County	Zip Code	City	County
04765	Patten	Penobscot				04572	Waldoboro	Lincoln
04777	Stacyville	Penobscot				04573	Walpole	Lincoln
04928	Corinna	Penobscot				04575	West Boothbay Harbor	Lincoln
04930	Dexter	Penobscot				04576	Southport	Lincoln
04932	Dixmont	Penobscot				04578	Wiscasset	Lincoln
04933	East Newport	Penobscot				04852	Monhegan	Lincoln
04939	Garland	Penobscot				04354	Palermo	Waldo
04953	Newport	Penobscot				04438	Frankfort	Waldo
04969	Plymouth	Penobscot				04496	Winterport	Waldo
04406	Abbot	Piscataquis				04848	Islesboro	Waldo
04414	Brownville	Piscataquis				04849	Lincolnville	Waldo
04415	Brownville Junction	Piscataquis				04850	Lincolnville Center	Waldo
04426	Dover Foxcroft	Piscataquis				04915	04915 Belfast	
04441	Greenville	Piscataquis				04921	Brooks	Waldo
04442	Greenville Junction	Piscataquis				04922	Burnham	Waldo
04443	Guilford	Piscataquis				04941	Freedom	Waldo
04463	Milo	Piscataquis				04949	Liberty	Waldo
04464	Monson	Piscataquis				04951	Monroe	Waldo
04479	Sangerville	Piscataquis				04952	Morrill	Waldo
04481	Sebec	Piscataquis				04972	Sandy Point	Waldo
04485	Shirley Mills	Piscataquis				04973	Searsmont	Waldo
04008	Bowdoinham	Sagadahoc				04974	Searsport	Waldo
04086	Topsham	Sagadahoc				04981	Stockton Springs	Waldo
04287	Bowdoin	Sagadahoc				04986	Thorndike	Waldo
04357	Richmond	Sagadahoc				04987	Troy	Waldo
04530	Bath	Sagadahoc				04988	Unity	Waldo
04548	Georgetown	Sagadahoc				04413	Brookton	Washington
04562	Phippsburg	Sagadahoc				04424	Danforth	Washington
04565	Sebasco Estates	Sagadahoc				04454	Lambert Lake	Washington
04579	Woolwich	Sagadahoc				04490	Topsfield	Washington
04478	Rockwood	Somerset				04491	Vanceboro	Washington
04911	Anson	Somerset				04492	Waite	Washington
04912	Athens	Somerset				04606	Addison	Washington
04920	Bingham	Somerset				04611	Beals	Washington

	ZONE 1 LOCAT	TIONS		ZONE 2 LOCATIO	NS		ZONE 3 LOCATIO	ONS
Zip Code	City	County	Zip Code	City	County	Zip Code	City	County
04923	Cambridge	Somerset				04619	Calais	Washington
04924	Canaan	Somerset				04622	Cherryfield	Washington
04925	Caratunk	Somerset				04623	Columbia Falls	Washington
04929	Detroit	Somerset				04626	Cutler	Washington
04937	Fairfield	Somerset				04628	Dennysville	Washington
04942	Harmony	Somerset				04630	East Machias	Washington
04943	Hartland	Somerset				04631	Eastport	Washington
04944	Hinckley	Somerset				04637 Grand Lake Stream 04643 Harrington		Washington
04945	Jackman	Somerset				04643	Harrington	Washington
04950	Madison	Somerset				04648	Jonesboro	Washington
04954	New Portland	Somerset				04649	Jonesport	Washington
04957	Norridgewock	Somerset				04652	Lubec	Washington
04958	North Anson	Somerset				04654	Machias	Washington
04961	New Portland	Somerset				04655	Machiasport	Washington
04965	Palmyra	Somerset				04657	Meddybemps	Washington
04967	Pittsfield	Somerset				04658	Milbridge	Washington
04971	Saint Albans	Somerset				04666	Pembroke	Washington
04975	Shawmut	Somerset				04667	Perry	Washington
04976	Skowhegan	Somerset				04668	Princeton	Washington
04978	Smithfield	Somerset				04671	Robbinston	Washington
04979	Solon	Somerset				04680	Steuben	Washington
04985	West Forks	Somerset				04686	Wesley	Washington
						04691	Whiting	Washington
						04694	Baileyville	Washington

нулс	Measure	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
IIVAC	R-Value		Base R-0			Base R-11			Base R-19			Base R-30			Base R-38	
	11	283.9	0.193	255.7												
	19	332.8	0.237	302.5	48.8	0.044	46.7									
AC with	30	364.2	0.246	332.2	80.3	0.053	76.4	31.5	0.009	29.7						
Gas Heat	38	377.1	0.255	344.2	93.1	0.061	88.5	44.3	0.018	41.7	12.8	0.009	12.0			
	49	387.5	0.272	354.8	103.6	0.079	99.1	54.7	0.035	52.4	23.3	0.026	22.7	10.5	0.018	10.6
	60	394.8	0.272	361.9	110.9	0.079	106.2	62.0	0.035	59.5	30.6	0.026	29.8	17.7	0.018	17.7
	11	4,262.2	0.193													
	19	4,950.5	0.228		688.3	0.035										
Heat Dump	30	5,361.6	0.246		1,099.4	0.053		411.1	0.018							
neat Pump	38	5,525.9	0.246		1,263.6	0.053		575.3	0.018		164.3	-				
	49	5,670.6	0.255		1,408.4	0.061		720.1	0.026		309.1	0.009		144.8	0.009	
	60	5,769.6	0.264		1,507.3	0.070		819.0	0.035		408.0	0.018		243.7	0.018	
	11	5,017.6	0.193													
	19	5,846.5	0.237		829.0	0.044										
AC with	30	6,357.2	0.246		1,339.6	0.053		510.7	0.009							
Heat	38	6,562.5	0.255		1,544.9	0.061		716.0	0.018		205.3	0.009				
	49	6,743.3	0.272		1,725.7	0.079		896.8	0.035		386.1	0.026		180.8	0.018	
	60	6,862.8	0.272		1,845.2	0.079		1,016.3	0.035		505.6	0.026		300.3	0.018	
	11	4,884.2	-													
	19	5,690.2	(0.044)		806.0	-										
Electric	30	6,186.5	(0.018)		1,302.3	0.026		496.3	-							
AC	38	6,385.3	(0.018)		1,501.1	0.026		695.1	-		198.8	-				
	49	6,561.2	(0.018)		1,677.0	0.026		870.9	-		374.7	-		175.9	-	
	60	6,677.4	(0.018)		1,793.2	0.026		987.2	-		490.9	-		292.1	-	
	11	150.6	-	255.7												
	19	176.6	(0.044)	302.5	26.0	-	46.7									
Gas Heat,	30	193.6	(0.018)	332.2	43.0	0.026	76.4	17.0	-	29.7						
No AC	38	199.9	(0.018)	344.2	49.3	0.026	88.5	23.3	-	41.7	6.2	-	12.0			
	49	205.4	(0.018)	354.8	54.8	0.026	99.1	28.8	-	52.4	11.8	-	22.7	5.5	-	10.6
	60	209.4	(0.018)	361.9	58.9	0.026	106.2	32.9	-	59.5	15.8	-	29.8	9.6	-	17.7

Table 6. Savings Factors for Attic/Roof Insulation: Zone 1, Low-Rise Multifamily Buildings (3 or Less Stories)

нулс	Measure	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
IIVAC	R-Value		Base R-0			Base R-11			Base R-19			Base R-30			Base R-38	
	11	350.3	0.404	301.6												
	19	414.3	0.466	357.2	64.0	0.061	55.6									
AC with	30	450.0	0.510	392.4	99.7	0.105	90.8	35.7	0.044	35.2						
Gas Heat	38	466.7	0.527	406.7	116.4	0.123	105.2	52.4	0.061	49.5	16.7	0.018	14.3			
	49	480.0	0.536	419.7	129.8	0.132	118.2	65.7	0.070	62.5	30.0	0.026	27.3	13.4	0.009	13.0
	60	487.8	0.545	428.1	137.6	0.141	126.5	73.5	0.079	70.9	37.9	0.035	35.7	21.2	0.018	21.3
	11	5,933.3	0.387													
	19	6,907.4	0.457		974.1	0.070										
Hoot Dump	30	7,488.7	0.492		1,555.4	0.105		581.3	0.035							
neat rump	38	7,715.0	0.501		1,781.7	0.114		807.6	0.044		226.3	0.009				
	49	7,921.5	0.518		1,988.1	0.132		1,014.1	0.061		432.8	0.026		206.4	0.018	
	60	8,056.0	0.527		2,122.7	0.141		1,148.6	0.070		567.3	0.035		341.0	0.026	
AC with	11	6,004.7	0.404													
	19	7,014.4	0.466		1,009.8	0.061										
	30	7,635.5	0.510		1,630.9	0.105		621.1	0.044							
Heat	38	7,887.7	0.527		1,883.1	0.123		873.3	0.061		252.2	0.018				
	49	8,110.2	0.536		2,105.5	0.132		1,095.8	0.070		474.7	0.026		222.4	0.009	
	60	8,255.6	0.545		2,251.0	0.141		1,241.2	0.079		620.1	0.035		367.9	0.018	
	11	5,829.0	-													
	19	6,806.8	(0.026)		977.8	-										
Electric	30	7,412.7	(0.044)		1,583.7	(0.018)		605.9	-							
AC	38	7,655.7	(0.044)		1,826.7	(0.018)		848.9	-		243.0	-				
	49	7,871.7	(0.044)		2,042.6	(0.018)		1,064.8	-		458.9	-		215.9	-	
	60	8,014.6	(0.044)		2,185.5	(0.018)		1,207.8	-		601.9	-		358.9	-	
	11	174.8	-	301.6												
	19	206.7	(0.026)	357.2	31.9	-	55.6									
Gas Heat,	30	227.2	(0.044)	392.4	52.4	(0.018)	90.8	20.5	-	35.2						
No AC	38	234.7	(0.044)	406.7	59.9	(0.018)	105.2	28.0	-	49.5	7.6	-	14.3			
	49	241.8	(0.044)	419.7	66.9	(0.018)	118.1	35.1	-	62.5	14.6	-	27.2	7.0	-	12.9
	60	247.0	(0.044)	428.1	72.2	(0.018)	126.5	40.3	-	70.9	19.9	-	35.7	12.3	-	21.3

Table 7. Savings Factors for Attic/Roof Insulation: Zone 2, Low-Rise Multifamily Buildings (3 or Less Stories)

нулс	Measure	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
IIVAC	R-Value		Base R-0			Base R-11			Base R-19			Base R-30			Base R-38	
	11	301.9	0.264	257.9												
	19	356.6	0.307	306.3	54.7	0.044	48.4									
AC with	30	392.1	0.343	337.3	90.2	0.079	79.3	35.5	0.035	30.9						
Gas Heat	38	404.6	0.351	350.3	102.7	0.088	92.4	48.0	0.044	44.0	12.5	0.009	13.1			
	49	417.3	0.360	360.9	115.4	0.097	103.0	60.7	0.053	54.6	25.2	0.018	23.6	12.7	0.009	10.5
	60	424.9	0.369	368.4	123.1	0.105	110.4	68.3	0.061	62.0	32.9	0.026	31.1	20.4	0.018	18.0
	11	4,382.6	0.255													
	19	5,099.3	0.299		716.7	0.044										
Heat Dumm	30	5,544.9	0.334		1,162.3	0.079		445.7	0.035							
neat Pump	38	5,723.0	0.343		1,340.4	0.088		623.7	0.044		178.1	0.009				
	49	5,881.2	0.351		1,498.6	0.097		782.0	0.053		336.3	0.018		158.2	0.009	
	60	5,987.4	0.360		1,604.8	0.105		888.2	0.061		442.5	0.026		264.4	0.018	
	11	5,076.3	0.264													
	19	5,946.5	0.307		870.2	0.044										
AC with	30	6,484.6	0.343		1,408.2	0.079		538.1	0.035							
Heat	38	6,698.7	0.351		1,622.3	0.088		752.2	0.044		214.1	0.009				
	49	6,890.3	0.360		1,813.9	0.097		943.8	0.053		405.7	0.018		191.6	0.009	
	60	7,015.9	0.369		1,939.6	0.105		1,069.4	0.061		531.3	0.026		317.2	0.018	
	11	4,935.8	-													
	19	5,778.6	0.018		842.8	-										
Electric	30	6,301.2	0.026		1,365.5	0.009		522.6	-							
AC	38	6,510.2	0.026		1,574.5	0.009		731.6	-		209.0	-				
	49	6,696.9	0.026		1,761.1	0.009		918.3	-		395.7	-		186.7	-	
	60	6,818.9	0.026		1,883.1	0.009		1,040.2	-		517.6	-		308.6	-	
	11	161.2	-	257.9												
	19	188.5	0.018	306.3	27.3	-	48.4									
Gas Heat,	30	208.6	0.026	337.3	47.4	0.009	79.3	20.1	-	30.9						
No AC	38	215.9	0.026	350.3	54.7	0.009	92.4	27.4	-	44.0	7.3	-	13.1			
	49	223.8	0.026	360.9	62.5	0.009	103.0	35.2	-	54.6	15.1	-	23.6	7.8	-	10.5
	60	227.8	0.026	368.4	66.6	0.009	110.4	39.3	-	62.0	19.2	-	31.1	11.9	-	18.0

Table 8. Savings Factors for Attic/Roof Insulation: Zone 3, Low-Rise Multifamily Buildings (3 or Less Stories)

нулс	Measure R-	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
HVAC	Value		Base R-0			Base R-11			Base R-19			Base R-30			Base R-38	
							Z	ONE 1								
	11	110.0	0.079	406.5												
	19	117.0	0.105	468.2	7.0	0.026	61.7									
Chiller and	30	120.1	0.123	506.7	10.1	0.044	100.3	3.1	0.018	38.6						
FPFC	38	121.0	0.131	521.7	11.0	0.053	115.2	3.9	0.026	53.5	0.9	0.009	14.9			
	49	121.7	0.131	535.6	11.7	0.053	129.1	4.6	0.026	67.4	1.6	0.009	28.8	0.7	-	13.9
	60	122.1	0.140	544.5	12.1	0.061	138.1	5.1	0.035	76.3	2.0	0.018	37.8	1.1	0.009	22.9
	11	-	-	452.9												
	19	-	-	521.7	-	-	68.8									
Steam	30	-	-	564.7	-	-	111.7	-	-	43.0						
Boiler Only	38	-	-	581.3	-	-	128.3	-	-	59.6	-	-	16.6			
	49	-	-	596.8	-	-	143.9	-	-	75.1	-	-	32.1	-	-	15.5
	60	-	-	606.8	-	-	153.8	-	-	85.1	-	-	42.1	-	-	25.5
							Z	ONE 2								
	11	130.3	0.149	481.9												
	19	140.4	0.175	556.3	10.1	0.026	74.3									
Chiller and Boiler with FPFC	30	145.5	0.193	601.4	15.2	0.044	119.5	5.1	0.018	45.1						
	38	147.3	0.210	619.5	16.9	0.061	137.5	6.8	0.035	63.2	1.8	0.018	18.1			
	49	148.8	0.219	635.5	18.4	0.070	153.6	8.3	0.044	79.2	3.2	0.026	34.1	1.5	0.009	16.0
	60	149.5	0.228	645.7	19.2	0.079	163.7	9.1	0.053	89.4	4.0	0.035	44.3	2.3	0.018	26.2
	11	-	-	537.0												
	19	-	-	619.9	-	-	82.8									
Steam	30	-	-	670.2	-	-	133.1	-	-	50.3						
Boiler Only	38	-	-	690.3	-	-	153.3	-	-	70.4	-	-	20.1			
	49	-	-	708.1	-	-	171.1	-	-	88.3	-	-	38.0	-	-	17.9
	60	-	-	719.5	-	-	182.5	-	-	99.6	-	-	49.3	-	-	29.2
							Z	ONE 3								
	11	140.8	0.088	420.9												
	19	152.9	0.096	489.0	12.1	0.009	68.1									
Chiller and Boiler with	30	158.9	0.123	531.7	18.1	0.035	110.8	6.0	0.026	42.7						
FPFC	38	161.0	0.131	548.0	20.2	0.044	127.1	8.2	0.035	59.0	2.1	0.009	16.3			
	49	162.8	0.140	562.9	22.0	0.053	142.0	9.9	0.044	73.9	3.9	0.018	31.2	1.8	0.009	14.9
	60	163.7	0.140	572.7	23.0	0.053	151.7	10.9	0.044	83.6	4.8	0.018	40.9	2.7	0.009	24.6
	11	-	-	469.0												
	19	-	-	544.9	-	-	75.9									
Steam	30	-	-	592.5	-	-	123.5	-	-	47.6						
Boiler Only	38	-	-	610.7	-	-	141.6	-	-	65.7	-	-	18.2			
	49	-	-	627.3	-	-	158.2	-	-	82.3	-	-	34.8	-	-	16.6
	60	-	-	638.1	-	-	169.1	-	-	93.2	-	-	45.6	-	-	27.4

Table 9. Savings Factor for Attic/Roof Insulation: Zones 1-3, High-Rise Multifamily Buildings (4 or More Stories)

нулс	Measure R-	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
HVAC	Value		Base 0-R			Base 11-R			Base 13-R			Base 17-R			Base 19-R	
	11	35.3	0.023	61.7												
	13	48.8	0.023	81.0	13.5	-	19.3									
A C with	17	62.5	0.034	107.7	27.2	0.011	46.0	13.6	0.011	26.7						
Gas Heat	19	67.7	0.034	117.5	32.3	0.011	55.8	18.8	0.011	36.6	5.2	-	9.9			
	21	72.6	0.046	125.8	37.3	0.023	64.1	23.7	0.023	44.8	10.1	0.011	18.1	4.9	0.011	8.3
	25	80.5	0.046	139.1	45.2	0.023	77.4	31.6	0.023	58.1	18.0	0.011	31.4	12.8	0.011	21.6
	27	83.7	0.046	144.5	48.4	0.023	82.8	34.9	0.023	63.5	21.2	0.011	36.8	16.1	0.011	26.9
	11	760.8	-													
	13	1,005.4	-		244.6	-										
	17	1,336.9	0.011		576.1	0.011		331.5	-							
Heat Pump	19	1,457.6	0.011		696.8	0.011		452.2	-		120.7	-				
	21	1,557.4	0.011		796.6	0.011		552.0	-		220.5	-		99.8	-	
	25	1,716.5	0.023		955.7	0.023		711.2	0.011		379.7	0.011		258.9	-	
	27	1,781.2	0.023		1,020.4	0.023		775.8	0.011		444.3	0.011		323.6	-	
	11	964.0	-													
AC with	13	1,275.2	-		311.2	-										
	17	1,698.2	0.011		734.2	0.011		423.0	-							
Electric	19	1,852.5	0.011		888.5	0.011		577.3	-		154.3	-				
Heat	21	1,982.3	0.023		1,018.3	0.023		707.1	0.011		284.1	0.011		129.8	-	
	25	2,187.0	0.023		1,223.0	0.023		911.8	0.011		488.8	0.011		334.5	-	
	27	2,268.8	0.023		1,304.8	0.023		993.6	0.011		570.6	0.011		416.2	-	
	11	960.2	-													
	13	1,267.2	-		307.0	-										
Electric	17	1,690.7	(0.023)		730.5	(0.023)		423.6	-							
Heat, No	19	1,843.7	-		883.5	-		576.5	0.023		153.0	-				
AC	21	1,975.5	-		1,015.3	-		708.3	0.023		284.7	-		131.8	-	
	25	2,177.4	(0.023)		1,217.2	(0.023)		910.2	-		486.6	(0.023)		333.7	-	ļ
	27	2,260.1	-		1,299.9	-		992.9	0.023		569.3	-		416.4	-	
	11	31.5	-	61.7												
	13	40.8	-	81.0	9.3	-	19.3									
Gas Heat	17	55.2	(0.023)	107.7	23.6	(0.023)	46.0	14.3	-	26.7						
No AC	19	58.7	-	117.5	27.2	-	55.8	17.9	0.023	36.6	3.6	-	9.9			
	21	65.8	-	125.8	34.3	-	64.1	25.0	0.023	44.8	10.7	-	18.1	7.1	-	8.3
	25	70.9	(0.023)	139.1	39.3	(0.023)	77.4	30.0	-	58.1	15.7	(0.023)	31.4	12.2	-	21.6
	27	74.9	-	144.5	43.3	-	82.8	34.1	0.023	63.5	19.7	-	36.8	16.2	-	26.9

Table 10. Savings Factors for Floor/Wall Insulation: Zone 1, Low-Rise Multifamily Buildings (3 or Less Stories)

HVAC	Measure R-	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
	Value		Base 0-R			Base 11-R			Base 13-R			Base 17-R			Base 19-R	
	11	43.1	0.034	68.1												
	13	56.8	0.046	90.7	13.6	0.011	22.6									
a Caultala	17	77.3	0.057	122.9	34.2	0.023	54.8	20.5	0.011	32.2						
Gas Heat	19	83.0	0.069	134.6	39.9	0.034	66.5	26.3	0.023	43.9	5.7	0.011	11.7			
	21	87.9	0.069	144.1	44.8	0.034	76.0	31.2	0.023	53.4	10.7	0.011	21.2	4.9	-	9.5
	25	96.4	0.080	159.7	53.3	0.046	91.6	39.7	0.034	69.0	19.1	0.023	36.8	13.4	0.011	25.1
	27	100.4	0.080	166.0	57.3	0.046	97.9	43.7	0.034	75.3	23.2	0.023	43.1	17.4	0.011	31.4
	11	933.6	-													
	13	1,229.6	0.011		296.0	-										
	17	1,645.5	0.023		711.8	0.011		415.9	-							
Heat Pump	19	1,795.1	0.034		861.5	0.023		565.5	0.011		149.6	-				
	21	1,921.3	0.034		987.7	0.023		691.8	0.011		275.9	-		126.2	-	
	25	2,118.2	0.046		1,184.6	0.034		888.7	0.023		472.8	0.011		323.1	-	
	27	2,195.4	0.046		1,261.8	0.034		965.8	0.023		549.9	0.011		400.3	-	
	11	1,142.6	-													
	13	1,504.5	0.011		361.9	-										
AC with	17	2,034.9	0.023		892.2	0.011		530.3	-							
Electric	19	2,219.4	0.034		1,076.7	0.023		714.8	0.011		184.5	-				
Heat	21	2,373.1	0.034		1,230.5	0.023		868.6	0.011		338.3	-		153.8	-	
	25	2,616.9	0.046		1,474.3	0.034		1,112.4	0.023		582.0	0.011		397.5	-	
	27	2,715.5	0.046		1,572.9	0.034		1,211.0	0.023		680.7	0.011		496.2	-	
	11	1,136.1	-													
	13	1,496.4	-		360.3	-										
Electric	17	2,022.1	-		886.0	-		525.7	-							
Heat, No	19	2,206.7	-		1,070.6	-		710.4	-		184.6	-				
AC	21	2,362.3	-		1,226.2	-		866.0	-		340.2	-		155.6	-	
	25	2,604.1	-		1,468.0	-		1,107.7	-		581.9	-		397.3	-	
	27	2,703.2	-		1,567.1	-		1,206.9	-		681.1	-		496.5	-	
	11	36.2	-	68.1												
	13	48.2	-	90.7	11.9	-	22.6									
Gas Heat	17	64.4	-	122.8	28.2	-	54.7	16.3	-	32.1						
No AC	19	70.6	-	134.5	34.4	-	66.4	22.5	-	43.8	6.2	-	11.7			
	21	76.9	-	144.0	40.7	-	75.9	28.8	-	53.3	12.5	-	21.2	6.3	-	9.5
	25	83.5	-	159.6	47.2	-	91.5	35.3	-	68.9	19.0	-	36.8	12.8	-	25.1
	27	88.1	-	166.0	51.8	-	97.9	39.9	-	75.3	23.6	-	43.2	17.4	-	31.5

Table 11. Savings Factors for Floor/Wall Insulation: Zone 2, Low-Rise Multifamily Buildings (3 or Less Stories)

HVAC	Measure R-	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
	Value		Base 0-R			Base 11-R			Base 13-R			Base 17-R			Base 19-R	
	11	41.6	0.023	62.8												
	13	55.7	0.034	82.8	14.1	0.011	20.0									
A C with	17	73.2	0.046	112.0	31.5	0.023	49.2	17.4	0.011	29.2						
Gas Heat	19	80.7	0.046	122.7	39.1	0.023	59.9	25.0	0.011	39.9	7.6	-	10.7			
	21	87.5	0.046	132.1	45.9	0.023	69.3	31.8	0.011	49.3	14.3	-	20.1	6.8	-	9.4
	25	96.2	0.057	146.5	54.6	0.034	83.7	40.5	0.023	63.8	23.0	0.011	34.5	15.5	0.011	23.9
	27	99.8	0.057	152.2	58.1	0.034	89.3	44.0	0.023	69.4	26.6	0.011	40.1	19.0	0.011	29.5
	11	791.9	-													
	13	1,040.8	0.011		248.9	-										
	17	1,395.4	0.023		603.5	0.011		354.5	-							
Heat Pump	19	1,524.5	0.023		732.6	0.011		483.7	-		129.1	-				
	21	1,633.2	0.023		841.3	0.011		592.4	-		237.8	-		108.7	-	
	25	1,802.5	0.034		1,010.7	0.023		761.7	0.011		407.2	0.011		278.1	-	
	27	1,869.7	0.034		1,077.9	0.023		828.9	0.011		474.4	0.011		345.3	-	
	11	1,019.7	-													
	13	1,341.6	0.011		321.9	-										
AC with	17	1,793.1	0.023		773.4	0.011		451.6	-							
Electric	19	1,960.3	0.023		940.6	0.011		618.7	-		167.2	-				
Heat	21	2,101.1	0.023		1,081.4	0.011		759.5	-		308.0	-		140.8	-	
	25	2,319.2	0.034		1,299.5	0.023		977.6	0.011		526.1	0.011		358.9	-	
	27	2,406.7	0.034		1,387.0	0.023		1,065.1	0.011		613.6	0.011		446.4		
	11	1,014.6	-													
	13	1,333.0	-		318.4	-										
Electric	17	1,785.0	0.011		770.4	0.011		452.0	-							ļ
Heat, No	19	1,950.6	0.011		936.0	0.011		617.6	-		165.6	-				
AC	21	2,089.0	0.011		1,074.4	0.011		756.0	-		304.0	-		138.4	-	
	25	2,307.5	0.023		1,293.0	0.023		974.5	0.011		522.5	0.011		357.0	-	
	2/	2,394.3	0.023		1,379.8	0.023		1,061.3	0.011		609.3	0.011		443.8	-	
	11	36.6	-	62.8	10.5											
	13	47.1	-	82.8	10.5	-	20.0	17.0								
Gas Heat,	1/	64.9	0.011	112.0	28.3	0.011	49.2	17.8	-	29.2						
No AC	19	/1.2	0.011	122.7	34.6	0.011	59.9	24.1	-	39.9	6.3		10.7	4.0		
	21	/5.2	0.011	132.1	38.6	0.011	69.3	28.1	-	49.3	10.3	-	20.1	4.0	-	9.4
	25	84.5	0.023	146.4	47.9	0.023	83.6	37.4	0.011	63.6	19.6	0.011	34.4	13.3	-	23.7
	27	87.3	0.023	152.2	50.7	0.023	89.3	40.1	0.011	69.4	22.4	0.011	40.1	16.1	-	29.5

Table 12 . Savings Factors for Floor/Wall Insulation: Zone 3, Low-Rise Multifamily Buildings (3 or Less Stories)

	Measure R-	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF	EESF	DSF	HFSF
HVAC	Value		Base R-0			Base R-11			Base R-19			Base R-30			Base R-38	
								ZONE 1								,
	11	10.2	0.005	52.3												
Chiller and	13	13.2	0.008	68.8	3.0	0.003	16.5									
	17	17.3	0.011	91.8	7.1	0.005	39.5	4.1	0.003	23.0						
Boiler with	19	18.7	0.011	100.0	8.5	0.005	47.7	5.5	0.003	31.2	1.4	-	8.2			
FPFC	21	19.9	0.014	106.8	9.7	0.008	54.5	6.7	0.005	38.0	2.6	0.003	15.0	1.2	0.003	6.8
	25	21.7	0.014	117.4	11.4	0.008	65.1	8.4	0.005	48.6	4.4	0.003	25.6	3.0	0.003	17.4
	27	22.4	0.014	121.7	12.2	0.008	69.4	9.1	0.005	52.9	5.1	0.003	29.9	3.7	0.003	21.7
	11	-	-	58.3												
	13	-	-	76.7	-	-	18.4									
	17	-	-	102.3	-	-	44.0	-	-	25.6						
Steam Roilor Only	19	-	-	111.4	-	-	53.1	-	-	34.8	-	-	9.1			
Boller Only	21		-	119.0	-	-	60.7	-	-	42.4	-	-	16.7	-	-	7.6
	25		-	130.8	-	-	72.5	-	-	54.1	-	-	28.5	-	-	19.4
	27	-	-	135.6	-	-	77.3	-	-	59.0	-	-	33.3	-	-	24.2
								ZONE 2								
	11	17.9	0.016	61.3												
	13	23.2	0.024	80.3	5.3	0.008	19.0									
Chiller and	17	30.5	0.033	106.3	12.6	0.016	45.0	7.3	0.008	26.0						
Boiler with FPFC	19	33.1	0.035	115.6	15.2	0.019	54.3	9.9	0.011	35.3	2.6	0.003	9.4			
	21	35.3	0.038	123.6	17.4	0.022	62.3	12.1	0.014	43.3	4.8	0.005	17.3	2.2	0.003	8.0
	25	38.6	0.041	136.0	20.8	0.024	74.7	15.4	0.016	55.7	8.1	0.008	29.7	5.5	0.005	20.3
	27	40.0	0.044	140.9	22.1	0.027	79.6	16.8	0.019	60.6	9.5	0.011	34.6	6.9	0.008	25.3
	11			68.3												
	13		-	89.5			21.2									
	17		-	118.4	-		50.1			28.9						
Steam	19		-	128.9	-		60.5	-		39.4			10.4			
Boiler Only	21	-	-	137.7	-	-	69.4	-	-	48.2	-	-	19.3			8.9
	25	-	-	151.5	-	-	83.2	-	-	62.0	-	-	33.1	-	-	22.7
	27	-	-	157.0	-	-	88.7	-	-	67.5	-	-	38.6	-	-	28.2
								ZONE 3								
	11	9.7	0.005	55.6												
	13	12.5	0.005	72.8	2.8		17.2									
Chiller and	17	16.2	0.008	96.9	6.4	0.003	41.3	3.7	0.003	24.1						
Boiler with	19	17.5	0.008	105.5	7.7	0.003	49.9	4.9	0.003	32.7	1.3		8.6			
FPFC	21	18.5	0.011	112.7	8.7	0.005	57.1	6.0	0.005	39.9	2.3	0.003	15.8	1.0	0.003	7.2
	25	20.0	0.011	123.8	10.3	0.005	68.2	7.5	0.005	51.0	3.9	0.003	26.9	2.6	0.003	18.3
	27	20.6	0.011	128.4	10.9	0.005	72.8	8.1	0.005	55.6	4.5	0.003	31.5	3.2	0.003	22.9
	11	-	-	62.0			-	-			-					_
	13		-	81.1			19.2									
	17		-	108.0	-	-	46.0			26.9						
Steam	19		-	117.6	-	-	55.6	-	-	36.4			9.6			
Boiler Only	21	-	-	125.6	-	-	63.6	-	-	44.4	-	-	17.6			8.0
	25		-	137 9	-	-	76.0	-	-	56.8	-	-	30.0	-	-	20.4
	27	-	-	143.0	-	-	81.1	-	-	61.9	-	-	35.0	-	-	25.4

Table 13. Savings Factor for Floor/Wall Insulation: Zones 1-3, High-Rise Multifamily Buildings (4 or More Stories)

Existing Equipment Type	EF BASE
Air Furnace ≤ 300 Mbtu/hr	78%
Non-Condensing Hot Water Boiler ≤ 300 Mbtu/hr	80%
Non-Condensing Hot Water Boiler > 300 and ≤ 500 Mbtu/hr	75%
Non-Condensing Hot Water Boiler > 500 and ≤ 1,000 Mbtu/hr	75%
Non-Condensing Hot Water Boiler > 1,000 and ≤ 1,700 Mbtu/hr	75%
Non-Condensing Hot Water Boiler > 1,700 Mbtu/hr	80%
Condensing Hot Water Boiler ≤ 300 Mbtu/hr	80%
Condensing Hot Water Boiler > 300 and ≤ 500 Mbtu/hr	75%
Condensing Hot Water Boiler > 500 and ≤ 1,000 Mbtu/hr	75%
Condensing Hot Water Boiler > 1,000 and ≤ 1,700 Mbtu/hr	75%
Condensing Hot Water Boiler > 1,700 Mbtu/hr	80%
Steam Boiler ≤ 300 Mbtu/hr	75%
Steam Boiler > 300 and ≤ 2,500 Mbtu/hr	75%
Steam Boiler > 2,500 and ≤ 10,000 Mbtu/hr	80%
Unit Heater - Low-intensity, infrared, all capacity ranges	80%
Unit Heater - Warm Air, all capacity ranges	80%
New Construction, Replace on Burnout Standard Baseline	84% ¹⁸⁷

Table 15. Daily Water Usage by Number of People in Household¹⁸⁸

Number of People/household	GPD/household
1	29
2	46
3	62
4	78
5	94
6	111

Table 16. Efficient Water Heater EF_{EE}

Efficient Measure Type	EFEE
Heat Pump Water Heater	2.2
Instantaneous (Tankless) Water Heater	2.2
Storage-Type Water Heater (V≤50	Actual
Gallons)	

 ¹⁸⁷ Based on Code of Federal Regulations minimum AFUE for Non-weatherized oil-fired hot water boiler: <u>http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10
 ¹⁸⁸ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, New York Evaluation Advisory Contractor Team & TecMarket Works,
</u>

October 15, 2010; Page 90

Tank Size (Gal)	UA (Btu/hr-°F)
0	4.1
40	4.1
80	6.1
120	8.4
140	9.6
200	11.7
250	13.3
350	17.1
400	18.5
500	20.9
750	27.7
1000	34.6

Table 17. Deemed UA Values for Indirect Water Heaters, by Tank Size	189
---	-----

¹⁸⁹ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, New York Evaluation Advisory Contractor Team & TecMarket Works, October 15, 2010; Page 87

Table 18. Meas	sure Life Reference f	or Custom Proiects ¹⁹⁰
----------------	-----------------------	-----------------------------------

End-Use	Measure Category	New Construction	Retrofit
Custom Lighting	Equipment	15	13
	Controls	10	9
	Chillers/Chiller Plant	20	NA
	HVAC Equipment	15	13
Custom HVAC	EMS & HVAC Controls	15	10
	Heating System Replacement/Upgrade	25	25
	Heating System Maintenance (e.g,. burner optimization, tune-up)	10	10
Custom Motors and VFDs	Equipment	15	13
Custom Compressed Air	Equipment	15	13
	Process Cooling or Heating	15	13
	Commercial Compressors	15	13
	Industrial Compressors	20	18
Custom Miscellaneous	Controls	10	9
	0&M	NA	5
	Retro-commissioning	NA	5
	Envelope	20	20

¹⁹⁰ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-2.

Appendix E: Lighting Installed and Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)

Appendix E: Lighting Installed and Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)
The TRM shows the installed fixture table that is current at the start of the program year. New measure codes and fixture types may be added during the program year. For the most up to date table of eligible fixture types, see the Measure Code Reference Forms available on the Business Program Incentive Application page of the Efficiency Maine website: <u>http://www.efficiencymaine.com</u>.

Installed Fixture Description	Wattage (Watts _{EE})	Installed Fixture Description	Wattage (Watts _{EE})
CFL - 1/10W	12	T5 - 10-Lamp 4' T5 HO	588
CFL - 1/13W	15	T5 - 1-Lamp 2' T5	19
CFL - 1/16W 2D	18	T5 - 1-Lamp 2' T5 HO	28
CFL - 1/18W	20	T5 - 1-Lamp 4' T5	32
CFL - 1/21W 2D	22	T5 - 1-Lamp 4' T5 HO	59
CFL - 1/22W	24	T5 - 2-Lamp 2' T5	27
CFL - 1/23W	25	T5 - 2-Lamp 2' T5 HO	55
CFL - 1/26W	28	T5 - 2-Lamp 4' T5	63
CFL - 1/28W	30	T5 - 2-Lamp 4' T5 HO	117
CFL - 1/32W CIRCLINE	34	T5 - 3-Lamp 4' T5 HO	177
CFL - 1/38W 2D	36	T5 - 4-Lamp 4' T5 HO	234
CFL - 1/42W	48	T5 - 5-Lamp 4' T5 HO	294
CFL - 1/44W CIRCLINE	46	T5 - 6-Lamp 4' T5 HO	351
CFL - 1/5W	7	T5 - 8-Lamp 4' T5 HO	468
CFL - 1/7W	9	T8 - 10-Lamp 4' HPT8	279
CFL - 1/9W	11	T8 - 1-Lamp 2' HPT8	17
CFL - 2/11W	26	T8 - 1-Lamp 4' HPT8	28
CFL - 2/13W	30	T8 - 1-Lamp 4' HPT8 (25&28 Watts)	24
CFL - 2/18W	40	T8 - 1-Lamp 4' HPT8 HIGH LMN	39
CFL - 2/26W	54	T8 - 1-Lamp 4' HPT8 LOW PWR	25
CFL - 2/32W	68	T8 - 2-Lamp 2' HPT8	37
CFL - 2/42W	100	T8 - 2-Lamp 4' HPT8	53
CFL - 2/5W	14	T8 - 2-Lamp 4' HPT8 (25&28 Watts)	44
CFL - 2/7W	18	T8 - 2-Lamp 4' HPT8 HIGH LMN	78
CFL - 2/9W	22	T8 - 2-Lamp 4' HPT8 LOW PWR	47
CFL - 3/13W	45	T8 - 3-Lamp 2' HPT8	53
CFL - 3/18W	60	T8 - 3-Lamp 4' HPT8	77
CFL - 3/26W	82	T8 - 3-Lamp 4' HPT8 (25&28 Watts)	67
CFL - 3/32W	114	T8 - 3-Lamp 4' HPT8 HIGH LMN	112
CFL - 3/42W	141	T8 - 3-Lamp 4' HPT8 LOW PWR	73
			·

Table 19 - Installed Fixture Rated Wattage Table (Watts_{EE})¹⁹¹

¹⁹¹ Note that not all installed fixtures are appropriate for each measure. For example, a high efficiency fluorescent bulb cannot be the installed fixture for a refrigerated case LED. The selection of installed fixtures is controlled within effRT based on the measure code selection.

Appendix E: Lighting Installed and Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)

Installed Fixture Description	Wattage	Installed Fixture Description	Wattage
	(Watts _{EE})		(Watts _{EE})
CFL - 3/9W	33	T8 - 4-Lamp 2' HPT8	62
CFL - 4/26W	108	T8 - 4-Lamp 4' HPT8	101
CFL - 4/32W	152	T8 - 4-Lamp 4' HPT8 (25&28 Watts)	88
CFL - 4/42W	188	LED 2x2 Recessed Fixture <50W	40
Exit Sign - 2.5W LED	2.5	LED 2x2 Recessed Fixture ≥50W	58
LED A	10	LED 2x4 Recessed Fixture <50W	44
LED BR30	10	LED 2x4 Recessed Fixture ≥50W	63
LED BR40	15	LED 1x4 Recessed Fixture <40W	33
LED Canopy	106	LED 1x4 Recessed Fixture ≥40W	48
LED D	12	LED High/Low Bay Fixtures <150W	105
LED Flood/Spot <50W	35	LED High/Low Bay Fixtures ≥150W	236
LED Flood/Spot (50W – 100W)	65	LED Refrigerated Case Light - Horizontal	2.4 W/ft
LED Flood/Spot ≥100W	138		
LED Kit (<50W)	35	T8 - 4-Lamp 4' HPT8 HIGH LMN	156
LED Kit (>100W)	130	T8 - 4-Lamp 4' HPT8 LOW PWR	93
LED Kit (50W-100W)	70	T8 - 5-Lamp 4' HPT8	0
LED MR16	7	T8 - 6-Lamp 4' HPT8	154
LED PAR 20	8	T8 - 6-Lamp 4' HPT8 HIGH LMN	224
LED PAR 30	12	T8 - 6-Lamp 4' HPT8 LOW PWR	134
LED PAR 38	22	T8 - 8-Lamp 4' HPT8	202
LED PG	60	LED Utility Pole (<50W)	32
LED PL (<50W)	40	LED Utility Pole (50W-100W)	70
LED PL (>100W)	150	LED Utility Pole (>100W)	156
LED PL (50W-100W)	80		
LED R	38		
LED SL (<50W)	40		
LED SL (>100W)	150		
LED SL (50W-100W)	80		
LED WP	35		

Measure Installed Fixture Des		Wattage Reduction (SAVE _{EE})
	LED PL (<50W)	88
Measure S11 LED Street & Parking Lot Lights S13 LED Wallpacks S17 Fuel Pump Canopy S23 LED Flood/Spot S31 Refrigerated Case LED Fixture S31 Refrigerated Case LED Fixture - Horizontal S41 Screw-In LED Lamps	LED PL (>100W)	308
S11 LED Stroot & Barking Lat Lights	LED PL (50W-100W)	208
STILED Street & Parking Lot Lights	LED SL (<50W)	88
	LED SL (>100W)	308
	LED SL (50W-100W)	208
S13 LED Wallpacks	LED WP	93
S17 Fuel Pump Canopy	LED Canopy	352
S23 LED Flood/Spot	LED Flood/Spot <50W	60
	LED Flood/Spot 50-100W	230
	LED Flood/Spot ≥100W	327
S31 Refrigerated Case LED Fixture	LED R	62
S31 Refrigerated Case LED Fixture - Horizontal	LED RH	4.6 W/ft
	LED A	50
	LED BR30	50
	LED BR40	45
S41 Screw-In LED Lamps	LED MR16	33
	LED PAR 20	31
	LED PAR 30	28
	LED PAR 38	78

Table 20 - Installed Fixture Rated Wattage Reduction Table (SAVE_{EE})

Existing Fixture Description	Wattage	Existing Fixture Description	Wattage
CFL - 11W	11	PSMH - 100W	118
CFL - 13W	13	PSMH - 150W	170
CFL - 27W	27	PSMH - 200W	219
Exit Sign - (2) 20W Incandescent	40	PSMH - 320W	349
Exit Sign - (2) 5W CFL	10	PSMH - 400W	435
Exit Sign - (2) 7.5W Incandescent	15	T12 - 1-Lamp 4' T12	41.7
Exit Sign - (2) 9W CFL	18	T12 - 1-Lamp 4' T12 HO	84
Halogen - 20W	20	T12 - 1-Lamp 5' T12 HO	97
Halogen - 50W	50	T12 - 1-Lamp 6' T12 HO	113
HPS - 100W	138	T12 - 2-Lamp 4' T12	70.7
HPS - 150W	188	T12 - 2-Lamp 4' T12 HO	131
HPS - 250W	295	T12 - 2-Lamp 5' T12 HO	170
HPS - 400W	465	T12 - 2-Lamp 6' T12 HO	193
HPS - 50W	65	T12 - 2-Lamp 8' T12	120.6
HPS - 70W	95	T12 - 2-Lamp 8' T12 HO	197.9
Incandescent - 100W	100	T12 - 2-Lamp U T12	72.5
Incandescent - 40W	40	T12 - 3-Lamp 4' T12	112.3
Incandescent - 60W	60	T12 - 4-Lamp 4' T12	141.2
Incandescent - 65W	65	T8 - 1-Lamp 4' T8	31
Incandescent - 75W	75	T8 - 1-Lamp 4' T8 HO	53
MH - 1000W	1075	T8 - 1-Lamp 5' T8 HO	62
MH - 100W	128	T8 - 1-Lamp 6' T8 HO	80
MH - 150W	190	T8 - 2-Lamp 4' T8	59
MH - 175W	215	T8 - 2-Lamp 4' T8 HO	100
MH - 200W	232	T8 - 2-Lamp 5' T8 HO	116
MH - 250W	288	T8 - 2-Lamp 6' T8 HO	136
MH - 400W	458	T8 - 2-Lamp U T8	60
		T8 - 3-Lamp 4' T8	89
		T8 - 4-Lamp 4' T8	112

Table 21 - Existing Fixture Rated Wattage Tabl	e ¹⁹²
--	------------------

¹⁹² Note that not all baseline fixtures are appropriate for each measure. For example, and incandescent exit sign cannot be the baseline for a new super-efficient T8. The selection of baseline fixtures is controlled within effRT based on the selected measure code.

Space Type	LPD _{BASE}
In Unit	1.1
Restrooms	0.9
Lobby	1.3
Stairs (Active)	0.6
Corridor/Transition	0.5
Multipurpose	1.3
Gymnasium/Exercise Center (Exercise Area)	0.9
Inactive Storage	0.3
Electrical/Mechanical	1.5
Parking Garage (Garage Area)	0.2

Table 22 – Lighting Power Allowance (Watt/ft²) by Space-Type

Appendix F: Prescriptive Lighting Measure Cost

Moscuro Codo	Moosuro Subdivision	Installed Cost:	Installed Cost:	Incromontal Cost
ivieasure coue		High Efficiency	Standard Practice	incremental Cost
L10	NA	\$36	\$0	\$36
L10.1	NA	\$36	\$0	\$36
L15	NA	\$85	\$0	\$85
L15.1	NA	\$85	\$0	\$85
L16	NA	\$93	\$45	\$48
L20	NA	\$86	\$0	\$86
L25	NA	\$72	\$0	\$72
L30	NA	\$92	\$0	\$92
L30.1	NA	\$92	\$0	\$92
L31	NA	\$94	\$63	\$31
L32	NA	\$175	\$0	\$175
L32.1	NA	\$175	\$0	\$175
L33	NA	\$143	\$63	\$80
L35	NA	\$174	\$67	\$107
L50	NA	\$68	\$0	\$68
L60	NA	\$74	\$0	\$74
L70	NA	\$120	\$0	\$120
L71	NA	\$59	\$0	\$59
X10	NA	\$47	\$0	\$47
S8	NA	\$500	\$0	\$500
	<50 W	\$330	\$0	\$330
S10	50-100 W	\$585	\$0	\$585
	>100 W	\$830	\$0	\$830
	<50 W	\$330	\$215	\$115
S11	50-100 W	\$585	\$400	\$185
	>100 W	\$830	\$565	\$265
S12	NA	\$370	\$0	\$370
\$13	NA	\$370	\$130	\$240
	LED Canopy < 50 W	\$350	\$0	\$350
S16	LED Canopy 50 W – 80 W	\$550	\$0	\$550
	LED Canopy > 80 W	\$600	\$0	\$600

Table 23 – Measure Costs for Prescriptive Lighting¹⁹³

Illinois TRM V4.0, 2/24/15, http://www.icc.illinois.gov/downloads/public/Illinois Statewide TRM Effective 060115 Final 022415 Clean.pdf

Mid-Atlantic TRM V5.0, 6/2015, http://www.neep.org/sites/default/files/resources/Mid-Atlantic_TRM_V5_FINAL_5-26-2015.pdf Design Light Consortium, https://www.designlights.org/qpl

¹⁹³ Measure cost analysis performed by Cadmus June 2015 based on the following sources:

Northwest Power and Conservation Council 7th Power Plan, updated 2015, http://www.nwcouncil.org/energy/powerplan/7/technical Regional Technical Forum (RTF), http://rtf.nwcouncil.org/measures/Default.asp

Massura Cada	Maagura Subdivision	Installed Cost:	Installed Cost:	Incremental Cost	
ivieasure coue		High Efficiency	Standard Practice	incremental Cost	
	LED Canopy < 50 W	\$350	\$250	\$100	
S17	LED Canopy 50 W – 80 W	\$550	\$350	\$200	
Measure CodeMeasure SubdivisionS17LED Canopy < 50 W		\$600	\$450	\$150	
S20	NA	\$75	\$0	\$75	
S21	NA	\$75	\$60	\$15	
	LED Flood/Spot <50 W	\$280	\$0	\$280	
S22	LED Flood/Spot 50W – 100 W	\$500	0	\$500	
	LED Flood/Spot ≥100 W	\$700	\$0	\$700	
	LED Flood/Spot <50W	\$280	\$110	\$170	
S23	LED Flood/Spot 50W – 100W	\$500	\$210	\$290	
	LED Flood/Spot ≥100 W	\$700	\$310	\$390	
S30	NA	\$192	\$0	\$192	
\$31	NA	\$192	\$100	\$92	
S32	NA	\$220	\$0	\$220	
\$33	NA	\$220	\$100	\$120	
	LED 2x2 Interior Fixture <50 W	\$160	\$0	\$160	
	LED 2x2 Interior Fixture ≥50W	\$205	\$0	\$205	
SEO	LED 2x4 Interior Fixture <50W	\$190	\$0	\$190	
330	LED 2x4 Interior Fixture ≥50W	\$239	\$0	\$239	
	LED 1x4 Interior Fixture <40W	\$164	\$0	\$164	
	LED 1x4 Interior Fixture ≥40W	\$220	\$0	\$220	
	LED 2x2 Interior Fixture <50W	\$160	\$60	\$100	
	LED 2x2 Interior Fixture ≥50W	\$205	\$78	\$127	
\$51	LED 2x4 Interior Fixture <50W	\$190	\$72	\$118	
551	LED 2x4 Interior Fixture ≥50W	\$239	\$92	\$147	
	LED 1x4 Interior Fixture <40W	\$164	\$61	\$103	
	LED 1x4 Interior Fixture ≥40W	\$220	\$84	\$136	
	Retrofit Kit for LED 2x2 Interior Fixture <50W	\$160	\$0	\$160	
	Retrofit Kit for LED 2x2 Interior Fixture ≥50W	\$205	\$0	\$205	
\$52	Retrofit Kit for LED 2x4 Interior Fixture <50W	\$190	\$0	\$190	
552	Retrofit Kit for LED 2x4 Interior Fixture ≥50W	\$239	\$0	\$239	
	Retrofit Kit for LED 1x4 Interior Fixture <40W	\$164	\$0	\$164	
	Retrofit Kit for LED 1x4 Interior Fixture ≥40W	\$220	\$0	\$220	
560	LED High/Low Bay Fixtures <150W	\$450	\$0	\$450	
S60 LED High/Low Bay Fixtures ≥150W		\$585	\$0	\$585	
<u>S61</u>	LED High/Low Bay Fixtures <150W	\$450	\$140	\$310	
501	LED High/Low Bay Fixtures ≥150W	\$585	\$140	\$445	
\$70	LED Stairway ≤ 40 W	\$250	\$0	\$250	
570	LED Stairway > 40 W	\$325	\$0	\$325	

Measure Code	Measure Subdivision	Installed Cost: High Efficiency	Installed Cost: Standard Practice	Incremental Cost
\$71	LED Stairway ≤ 40 W	\$250	\$45	\$205
571	LED Stairway > 40 W	\$325	\$45	\$280
	LED Linear Ambient < 50 W	\$200	\$0	\$200
590	LED Linear Ambient 50 W – 100 W	\$300	\$0	\$300
380	LED Linear Ambient > 100 W	\$375	\$0	\$375
	LED Linear Ambient < 50 W	\$200	\$45	\$155
S81	LED Linear Ambient 50 W – 100 W	\$300	\$45	\$255
	LED Linear Ambient > 100 W	\$375	\$45	\$330

Appendix G: Average Annual Lighting Operating Hours and other Lookup Tables

Multifamily Buildings			
Space Type	Annual Hours		
In-Unit: Kitchen/Dining	744.6 ^A		
In-Unit: Living Room	744.6 ^A		
In-Unit: Hallways	744.6 ^A		
in-Unit: Laundry/Utility Room	744.6 ^A		
In-Unit: Bedroom	744.6 ^A		
In-Unit: Bathroom	744.6 ^A		
Common Area: Corridors/Hallways (24 HR)	8,760 [°]		
Common Area: Stairs (24 HR)	8,760 ^B		
Common Area: Other (non-24 HR)	2,278 ^B		
Exterior Lighting	4,380 ^B		
^A Annual hours based on evaluated results for residential CFL and			
LED			
^B ASHRAE 90.1-2007, Section 9.4.1.1			
^c Average value for "Other" building type in Commercial/Industrial			
sector.			

Table 24 –	Reference	Lighting	Annual	Operating Hours
------------	-----------	----------	--------	------------------------

Table 25 – Sa	avings Factors	for Lighting	Controls
---------------	----------------	--------------	----------

Multifamily Buildings			
Space Type	% of Annual Lighting Energy Saved (SVG)		
Common Area: Corridors/Hallways (24 HR)	25% ^A		
Common Area: Stairs (24 HR)	35% ^A		
Common Area: Other (non-24 HR)	25% ^B		

^A Efficiency Maine Multifamily Efficiency Program Simulation Guidelines, Table 9.1, page 23 ^B Average value for "Other" building type in Commercial/Industrial sector.

Appendix H: Standard Assumptions for Maine

Heating Fuel	Percentage of Homes	Distribution Excluding Coal and Other	Distribution Excluding Natural Gas, Coal and Other
Natural Gas	9%	9%	N/A
Oil	65%	66%	72%
Wood	8%	8%	9%
Propane	6%	6%	7%
Kerosene	6%	6%	7%
Pellet	4%	4%	4%
Electricity	0.80%	0.80%	0.9%
Coal	0.40%	N/A	N/A
Other	0.30%	N/A	N/A

Table 26. Distribution of Heating Fuel for Maine Residential Customers

Appendix I: Custom Projects – Process Documentation

This appendix documents the eligibility, application and proposal requirements, and the review process for custom projects under the Multifamily Efficiency Program.

PROJECT ELIGIBILITY

- Eligible Measures: Measures representing technologies that are not supported by the Multifamily Efficiency Program, or are prohibited by the Multifamily Efficiency Program's Terms and Conditions, will not be considered for custom incentives regardless of project economics.
- Internal Rate of Return > 10%: Custom projects must have an internal rate of return (IRR) greater than 10% as
 determined in the Efficiency Maine screening tool. In calculating the IRR for Custom Project screening, the
 benefit is calculated as the net present value of the projected avoided cost of the saved energy (kWh) from the
 project, over the defined measure life, and the cost is the measure cost appropriate to the Project Type
 (incremental cost for new construction or replacement and full measure cost for retrofit).
- Incentive Limit: Incentives on Custom projects may not exceed 50% of total project cost.
- **Preapproval prior to implementation:** Preapproval is required for all custom incentives. Measures that are implemented before preapproval is obtained are not eligible for incentives.

PROJECT APPLICATION AND PROPOSAL REQUIREMENTS

All applications and proposals for Custom Projects through the Multifamily Efficiency Program must include:

- An analysis and description of the projected energy savings, including all data, calculations, spreadsheet tools, and the basis for any assumptions clearly presented.
- Cut sheets and manufacturers performance data that is pertinent to the savings analysis.
- Clearly worded descriptions of the baseline and the energy efficient equipment and operating conditions.
- Equipment and installation costs associated with each component of the proposed measures. For new or replacement measures, cost data must be provided for both the baseline and the energy efficient options.

REVIEW OF APPLICATIONS AND PROPOSALS

Review of the Custom Project Applications consists of the following steps.

1. <u>Initial review.</u> The assigned engineer completes initial review of the application or proposal package to determine if sufficient information is provided to validate appropriateness and make a preliminary eligibility decision.

Based on the initial application review, the assigned reviewing engineer proceeds as follows:

o If application is *incomplete*, engineer provides written request for additional required information.

- If application appears to be *complete and appropriate* for the program, engineer acknowledges receipt of application and proceeds to Step 2 Validation of submitted measure cost and savings values.
- If application is *inappropriate* for the program to which it was submitted (e.g., project fails basic eligibility requirements), engineer suspends review. For Business Incentive Program, engineer contacts applicant to redirect or explain reason for determination.
- 2. <u>Validation of submitted measure cost</u>. The assigned engineer completes a thorough review of submitted cost data to determine that it is reasonable and that it represents only costs of equipment and installation necessary to facilitate implementation of the proposed measure(s) that lead directly to the projected energy savings.
 - If the submitted costs lack adequate documentation and/or appears to be inappropriate, request additional detail and supporting documents (e.g., vendor quotes, schedule of values, line item budget, etc.).
 - If the submitted costs appear to include inappropriate or extraneous elements, deduct such costs, and document the rationale for the deductions (for example, if the cost reflects installation of a new chiller with a water side economizer, and submitted savings are all associated with the economizer, the measure cost should only be those associated with the economizer).
 - If the submitted costs appear appropriate for the proposed measure(s), proceed to validation of the projected savings.
- 3. <u>Validation of projected annual energy savings</u>. The assigned engineer completes a thorough review of the submitted savings analysis to verify accuracy of calculations and to verify that the analysis is based on accepted engineering practices, documented equipment performance specifications, actual recorded data and/or reasonable and documented assumptions related to operating hours and load profiles.
 - If submitted savings analysis is found to include inconsistencies and/or errors that can be readily corrected, make appropriate adjustments to the projected level of savings and document the adjustment.
 - If the submitted savings analysis is based on a building simulation model, or other analysis that does not provide details of the underlying actual calculations, validate projected savings through one of the following methods:
 - Review of sufficient inputs and outputs from the model to validate the accuracy and reasonableness of the projection. Historical consumption data for the facility should be requested in cases where it is deemed appropriate; such data can often be useful to verify that models have been calibrated and projected baseline consumption levels are feasible.
 - Independent derivation of the savings based on the submitted equipment performance specifications and load profiles.
 - If the submitted savings cannot be validated using the process outlined above, the applicant/bidder should be informed in writing of the deficiencies and the additional documentation that is necessary to complete the review of the application/proposal. In the case of Business Incentive Program

applications, the applicant/QP can be advised of Technical Assistance Funding and provided with contacts for technical experts capable of projecting the savings associated with the measure, as appropriate.

- 4. <u>Determination of peak demand savings</u>: The assigned engineer uses the project documentation to calculate the coincident peak demand savings, which are used to report the impact of measures on grid electrical demands during on-peak summer and on-peak winter periods. For all custom projects (Business Incentive Program and Large Customer Program), the reviewing engineer uses the following process to determine and document the project's coincident peak demand savings:
 - The reviewer will calculate the gross reduction in input kW resulting from the measure using one of the following methods:
 - Demand Reduction (kW)= overall connected kW of the base line system overall connected load of the proposed system
 - Average Demand Reduction (kW) = Validated Annual Energy Savings (kWh/year) / Annual Operating Hours (hours/year)
 - If the measure technology is described in one of the categories with coincidence factors provided in Appendix C of this document, apply the appropriate coincidence factor from Appendix C to the calculated average demand reduction and document the resulting summer and winter demand impact using the following formula.
 - Summer Peak Demand savings (kW) = Average Demand Reduction (kW) x Applicable Summer Coincidence Factor (%)
 - Winter Peak Demand savings (kW) = Average Demand Reduction (kW) x Applicable Winter Coincidence Factor (%)
 - For cases where the measure technology does not fit within a category with coincidence factors provided in Appendix C, or where it is defined by the category but the load shape is clearly documented as non-typical for the category (e.g., exterior lighting with photo-cell control), the reviewing engineer will use the available data to predict and document the project specific winter and summer peak demand savings.

In many cases, the submitted savings analysis will include an hourly projection of baseline and proposed consumption that will allow the engineer to quickly and accurately calculate project specific peak demand savings using the following algorithm:

- Average Summer Peak Demand savings (kW) = [Validated Annual Energy Savings During Summer Coincident Demand Hours (kWh/year]) / [Total Number of Summer Coincident Demand Hours (hrs/year)]
- Average Winter Peak Demand savings (kW)= [Validated Annual Energy Savings During Winter Coincident Demand Hours (kWh/year)] / [Total Number of Winter Coincident Demand Hours (hrs/year)]

In other cases, the load shape data included in the submitted savings analysis will be less specific, and the engineer will use whatever site specific data is available and apply assumptions to extrapolate a reasonable approximation of the demand savings during coincident peak summer and winter hours.

5. <u>Validation of cost effectiveness</u>: Once measure cost and annual energy savings have been validated, the reviewing engineer verify and validate the project meets the cost-effectiveness requirements as documented above (under PROJECT ELIGIBILITY).

To complete this step, the engineer will enter the following data into the Efficiency Maine screening tool:

- Measure life
- Validated annual energy savings
- Projected peak demand savings
- Validated measure cost
- Blended average energy cost¹⁹⁴
- 6. **Documentation:** The reviewing engineer will use the Efficiency Maine *Custom Incentive Review Summary Template* to document the review process, including the following elements:
 - Brief summary of the submitted application/proposal including a measure description, measure cost, projected annual savings and requested incentive amount.
 - Brief summary of the review process with specific mention of any adjustments to the submitted cost and savings values including the rationale supporting these adjustments.
 - Explanation of the reviewing engineer's derivation of the peak demand savings.
 - Efficiency Maine screening tool inputs and outputs, including, but not limited to: energy savings, peak demand savings, measure life, benefit-cost ratio and simple payback period, and projects.
 - The approved incentive level.

¹⁹⁴ The blended average cost values provided with the application are typically based on a single monthly bill. In cases where this blended average cost value significantly impacts eligibility and/or the magnitude of the available incentive, additional effort will be made to validate these values based on a recent 12 months of historical cost and consumption data.